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I.  Introduction 
This guidance describes a process for the Idaho Department of Environmental Quality 
(DEQ) to use when determining if ground water quality is degraded.  The term 
“degradation” is defined in the Idaho Ground Water Quality Rule (IDAPA 58.01.11) “as 
the lowering of ground water quality as measured in a statistically significant and 
reproducible manner.”  This guidance provides a process and statistical tools which can 
be used to determine statistically significant degradation.   

The two principal goals of the guidance are:  

• describe a statistically based process for establishing background ground water 
quality; and  

• identify methods and criteria for identifying when ground water quality degradation 
is statistically significant.   

An understanding of these two concepts is fundamental to addressing ground water 
quality issues.  Knowledge of the background ground water quality is necessary before 
ground water quality degradation can be identified. Once background ground water 
quality is established, ground water quality degradation can be determined.   

To achieve the two principal goals the guidance is structured around the following four 
objectives:   

• provide a standardized framework or process to objectively evaluate ground water 
quality data;  

• utilize a decision tree showing required elements;  

• provide flexibility to address site-specific conditions; and  

• suggest certain statistical tools but allow for  alternatives. 

The determination of what constitutes degraded ground water is essential for 
implementation of DEQ programs that rely on the Idaho Ground Water Quality Rule 
(Rule) to protect the health of Idahoans and the environment.  DEQ and the regulated 
community can utilize the methods contained in this document to estimate background 
ground water quality conditions and identify degradation.  This guidance document is 
intended to help interpret and apply the Idaho Ground Water Quality Rule at sites not 
addressed with existing state and federal program guidance.  It may also complement 
existing guidance by addressing situations not covered with other guidance.  This 
document does not impose legally binding requirements on DEQ or the regulated 
community.  The document identifies an approach for defining ground water degradation, 
but DEQ retains the discretion to adopt approaches on a case-by-case basis that differ 
from this information. Interested parties are free to raise questions about the 
appropriateness of the application of the information in this document to a particular 
situation, and DEQ will consider whether or not the technical approaches are appropriate 
in that situation.   
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II. Authorities and Definitions 
The legislation and rules addressing ground water quality issues in Idaho include the 
Idaho Ground Water Quality Protection Act of 1989 (Act) (§ 39-120 to § 39-127, Idaho 
Code) and the Idaho Ground Water Quality Rule (Rule) (IDAPA 58.01.11).  The Act 
created the Ground Water Quality Council and directed the Council to develop the 
Ground Water Quality Plan.  The Plan provides the overall direction and policies of the 
state with respect to ground water quality concerns.  The Rule implements a portion of 
the Plan.   

Background water quality can be established using samples collected from monitoring 
wells that sample the ambient ground water quality in the same aquifer that is likely to be 
impacted by development.  The Rule identifies two types of background ground water 
quality: natural and site.  

Natural background level is defined by the Rule “as the level of any constituent in the 
ground water within a specified area as determined by representative measurements of 
the ground water quality unaffected by human activities.”  In areas where the natural 
background level of a constituent exceeds the standard, the natural background level shall 
be used as the standard.   

Site background level is defined as the ground water quality at the hydraulically 
upgradient site boundary.  In areas where the ground water quality is unaffected by 
human activities, the site background level is equivalent to natural background.  
 

III. Statistical Characterization of Background Water Quality  
 
Before any data evaluation begins it is useful to have a clear understanding of the issues 
that need to be addressed, including the constituents of concern.  Once the main issues 
are defined, the data can be collected, and then reviewed within the appropriate context.  
Existing data must be compiled and evaluated to determine if the information is sufficient 
to adequately characterize the ground water quality.  In most cases, the goal of the 
statistical analysis will be to characterize background ground water quality in a valid 
manner such that decisions regarding ground water quality degradation are defensible.    
 
The guidance provides flexibility by allowing options to determine background ground 
water quality, depending on the adequacy of the data for statistical analysis.  If sufficient 
data are available to statistically characterize background water quality, then appropriate 
statistical methods may be employed.  Suggested methods to determine if the available 
ground water quality data are adequate to conduct valid statistical analyses are described 
in the Appendices. 
 
If data are insufficient to conduct valid statistical analyses, then a sampling plan to collect 
adequate data may be developed or background ground water quality may be estimated 
using an alternative concentration limit (ACL) in accordance with a DEQ prescribed 
method.  The ACL is designed to be protective of ground water quality by using the 
lowest value provided from three options as described in Appendix A.  If a sampling plan 
is implemented, the ACL will be used for decision-making purposes until adequate data 
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are collected to support valid statistical analyses.  However, an ACL also may be selected 
even when appropriate data are available for valid statistical analyses if the interested 
party does not want to conduct a statistical analysis and DEQ concurs with the decision.  
 

 
 
 

III.1 Elements of an Analysis 
 
The elements for characterizing background water quality are site-specific and dependent 
on the complexity of the area.  The steps to be completed for each site include: 
 

 State the objectives of the analysis; 

 Delineate the study area and hydrogeologic features relevant to monitoring; 

 Identify constituents of concern and provide rationale for considering them 

 Evaluate and define data adequacy in the context of the analysis objectives; 

 Identify appropriate statistical tools to address the issues; 

 If the data are inadequate for the analysis, determine an appropriate temporal 
scale for the data collection program and provide a rationale for why it is 
appropriate; and 

 If selected data are used in (or excluded from) the analysis, provide a rationale. 
 
The general process for defining background ground water quality is illustrated in the 
flow diagram in Figure 1. 
 
The elements must be addressed within the context of the hydrogeologic framework. 
Individual aquifers must be defined at the appropriate scale.  For each aquifer the ground 
water flow direction and ground water gradient should be described and uncertainties in 
both should be estimated.  Data on the ground water chemistry of each aquifer should be 
compiled and ground water quality trends should be identified, if data are sufficient.  The 
sampling locations and sampling frequency should be evaluated to ascertain if results can 
be used to represent the ground water quality within the area of concern.   
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Figure 1. Process for determining background ground water quality 
 

Are existing data sufficient to 
characterize background 
(see Figure 2 for process) 

NO 

YES

Determine Background 
Ground Water Quality 

Set an alternative 
concentration limit (ACL) as 
an interim decision threshold 

(Appendix A) 
 
ACL is the smallest of: 
• Maximum Concentration  
• Sample Mean + 1.65 (σ) 
• Sample Median + 1.65 (IQR) 

YES 

NO 

 Has a sampling plan been 
designed & implemented? 

Interim status until 
adequate data have 
been collected and 

background defined 

 
Background 
Is Defined 

Specify the Objectives and Goal of 
the Statistical Analysis 

Summarize the information and 
background statistics for each COC. 

• Specific aquifer for which background applies 
• Mean, median, 100(1-α)% confidence limit, 
variance. 
• Parametric or nonparametric distribution 
• Temporal trend summary 
• Seasonal pattern 

Specify the study boundary 
and COCs  

Select statistical tool  
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III.2 Evaluation of Hydrogeologic Data 

 
Ambient ground water quality typically varies spatially (between wells) and temporally 
(over time) at individual wells due to natural conditions.  Anthropogenic activities may 
contribute to the variability observed in water quality data.  Though a minimum of one 
upgradient well is needed to determine background water quality, spatial variability 
cannot be accurately assessed without at least three up-gradient wells (Fisher and Potter, 
1989; Cressie, 1993; Gibbons, 1994).  For sites that have not been previously affected by 
human activities, both upgradient and downgradient wells can be used to determine 
background water quality and spatial variability. 

The number of downgradient monitor wells should be sufficient to provide an accurate 
representation of the ground water quality to ensure that appropriate management 
decisions are made.  Some downgradient wells need to be placed at the point(s) of 
compliance for the property.  It is important to understand that since the statistical tests 
are based on data collected from monitoring wells that are in fixed locations, the 
statistical conclusions refer only to water in the monitoring wells and not in the aquifer in 
general (EPA, 1988; EPA, 1992b).   

Since hydraulic anisotropy causes ground water to flow in a direction that is not always 
perpendicular to measured water table gradients (Domenico and Schwartz, 1990; Fetter, 
1993), a line of downgradient wells at the discharge boundary of the site would provide 
the best chance for detecting the highest value(s) generated at the site.  Idaho’s Guide to 
Ground Water Sampling and Monitoring (Ogden, 1987) suggests a downgradient spacing 
of 150 feet between wells at hazardous waste disposal sites, with greater spacing at non-
hazardous waste disposal sites.  The monitoring plan should have sufficient wells to 
characterize the entire site in question. 

The hydrogeologic characteristics of the site will play a primary role in determining the 
number and location of the ground water monitoring wells.  The depth to water and flow 
direction, net recharge, aquifer material, soil characteristics, topography, thickness and 
lithology of the vadose zone, and hydraulic conductivity or permeability of the aquifer 
are all important in determining pollution potential of an aquifer and the necessary 
spacing and depth of monitoring wells (Ogden, 1987).  The geology of a site should be 
characterized through the interpretation of well logs, geologic maps, and cross sections.  
Structural features such as faults, fractures, fissures, impermeable boundaries, or other 
features that can influence flow direction, should be delineated.  Additional 
hydrogeologic information, if available, should be summarized where it is relevant to the 
adequacy of monitoring data, including but not limited to ground water flow velocity, 
transmissivity, storage coefficient, porosity, and dispersivity. 

 
III.3 Defining Constituents of Concern 

A constituent of concern (COC) is a chemical that is disturbed, generated, used or 
disposed at the site in sufficient quantity to pose a risk to beneficial uses of ground water 
or interconnected surface water.  This includes degradation products or chemicals 
released during chemical reactions in the environment.  COCs must be defined for each 



DRAFT - For Public review and comment 

StatGuidance 71707PublicDraft 8/3/2007 12

site and will be dependent on the site operations.  When deciding which chemical may be 
a COC, the following should be carefully considered:   

• The industrial/commercial processes resulting in the generation of the chemical(s) 
that are permitted to be handled, stored, or land applied on the site; 

• The physical and chemical properties of the chemical(s);  

• The methods of sample collection, handling, and transportation are appropriate for the 
COC; 

• The laboratory analysis procedures used to measure chemical concentration are 
appropriate for the COC; and 

• The complexity and sensitivity of the hydrogeologic environment. 

 
III.4 Adequate Sample Size 

This section specifically addresses quantifiable measurements above the detection limit 
not affected by censoring.  Procedures for dealing with censored data are discussed in 
section III.5.  The quality and quantity of available monitoring data are two of the most 
important factors in determining background water quality for a COC.  Individual ground 
water samples are only representative of ground water quality at a particular time in a 
particular location.  Ground water quality often varies seasonally or changes with time 
and/or location, so a single ground water sample may not be representative of ground 
water conditions throughout the site or over a period of time.  The greater the number of 
independent samples collected over time, the more representative the characterization of 
the ground water quality.  Larger sample populations also increase the statistical 
confidence in the evaluation of ground water quality.  Statistical testing depends upon 
collection of adequate data.  Statistical tests are based on using estimates of the true mean 
and true variance of a population. For example, the estimate of the true mean is the 
average of the data points collected.  The estimate of the true standard deviation is the 
standard deviation of the data points collected.   

The number of independent samples is dependent on the site-specific conditions, which 
in turn controls the data variability.  Under ideal circumstances, the U.S. Environmental 
Protection Agency (EPA 1992a) asserts that there must be 8 to 10 independent samples 
before one can generate a passable estimate of the population standard deviation for 
populations having normal or lognormal (parametric) distributions.  DEQ recommends 
collecting 12 independent samples for most statistical analysis methods discussed in this 
guidance document.  In contrast, estimating a tolerance interval for populations that are 
non-parametrically distributed, requires a minimum of 59 independent data points for 
95% coverage (where 95% of the data fall within the interval), at 95% confidence 
(Conover, 1999; EPA, 1992a; Gibbons, 1994, p.93).  

In situations where a seasonal trend is present within the data set, the Seasonal Kendall 
Test requires a minimum of three years (36 data points) of monthly data (Gilbert, 1987, 
p.225).  Harris et al. (1987) state that one is unlikely to be able to quantify serial 
correlation (independence) in quarterly ground water data without at least 10 years of 
quarterly data, or 40 data points.  When quarterly data are sparse, the Kruskall-Wallis 
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Test can be used as long as there are at least three years of quarterly data taken in the 
same months (a minimum of 12 independent data points).   

For example, DEQ recommends facilities collect a minimum of 12 independent quarterly 
samples for the determination of background water quality in each monitoring well for 
each COC.  This enables the monitoring program to capture the impact of seasonal 
fluctuations which typically occur at a site.  Collecting data above these minimum 
requirements will be useful and may be necessary in certain instances to better 
characterize the background water quality. 

 
III.5 Data Below Detection Limits 

A component of many data sets is non-detect values.  These data are referred to as 
censored data throughout the remainder of this guidance. For most nonparametric 
methods censored data is not an issue, but in parametric analyses, the effect of censored 
data is very dependent on the statistical form of the distribution of the data.  The 
procedure to evaluate censored data provided below in Figure 2 therefore applies 
primarily to parametrically distributed data.  Additional description of methods for 
handling censored data are provided in Gibbons (1994) and Helsel (1990, 2005). 

The first step when evaluating censored data is to distinguish between detection only 
applications such as identifying the first arrival of a constituent and ground water quality 
characterization (e.g. defining background or determining compliance).  If the data are 
used to determine whether a constituent is present, the results should be handled on a 
case-by-case basis independent of the process outlined in Fig. 2.  If the censored data will 
be used to estimate summary statistics, the procedure outlined in Figure 2 is applicable. 

The percentage of censored data within the entire data set determines the preferred 
method of describing the censored data.  However, before any analyses are performed 
DEQ recommends that the data set consist of at least 12 uncensored independent 
measurements to ensure the results of the analysis are representative of the ground water 
quality.   

Depending on the proportion of censored data, the recommended procedure utilizes one 
of the three basic methods for estimating summary statistics for censored data 
summarized by Helsel (1990).  These methods include:  

• simple substitution; 

• distributional methods; and  

• robust methods. 

If the percentage of censored measurements is relatively small, then simple substitution 
methods have been shown to be satisfactory for estimating parameters (Helsel, 1990).  If 
the percentage of censored data represents less than 20% of the data set then ½ the 
censoring limit is a valid estimate of the censored data values. The censoring limit can 
vary depending on the project and the laboratory analytical methods used.  It may include 
the practical quantitation limit, the method reporting limit, or the method detection limit. 
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If the percentage of censored measurements is greater than 20%, but less than 40%, and 
the data are deemed to be normally or lognormally distributed then the statistical 
parameters of the distribution may be inferred using distributional methods described in 
Helsel (1990), such as the maximum likelihood estimator (MLE). 

If more than 40% of the data set is comprised of censored measurements and the data are 
parametrically distributed, then multiple methods, including robust methods (Helsel, 
1990) should be evaluated to estimate the distribution’s parameters, including a 
sensitivity analysis of the results to decide on the best method. 

The Department may approve statistical methods for handling censored data other than 
those outlined in Figure 2. 

 

No

Yes

Detection-only 
application? 

h/N ≤ 0.2 ? 

h/N ≤ 0.4 ? 

No

Substitute ½ censoring 
limit for non-detects

Continue data analysis 
(go to Figure 3, Box 2)

Report the proportion
of non-detects (h / N)

No

Data normally (or log-
normally) distributed? 
(see Appendix D)

Estimate mean and s.d. with 
maximum likelihood estimators

Use only non-parametric 
estimation and hypothesis 

testing methods

Yes

Yes Yes

N – h ≥ 12 ? 

Non-detects
handled on a

case-by-case basis

Yes

No

Continue monitoring 
(go to Figure 1, Box 4)

• where N = total sample size;
and h = number of non-detects

Continue data analysis 
(Fig. 3) using estimated 

mean and s.d.

No

If data are parametric, perform 
sensitivity analysis using several 

methods to estimate mean and s.d., 
with decision to be made on a case-

by-case basis; if non-parametric, 
use only non-parametric estimation 

and hypothesis testing methods

 
Figure 2. Suggested Procedural Guidance for Handling Censored Data  

 
III.6 Evaluation of Background Water Quality Data 

The procedure for evaluating data to determine its suitability for statistical analysis and 
the information and analysis required to substantiate a statistical characterization of 
background water quality is outlined in Figure 3.  The steps include: data compilation; 
exploratory analysis and descriptive statistics; evaluation of data independence; analysis 
of frequency distribution and parametric behavior; seasonal and secular trend analysis; 
justification for data pooling if used; and an assessment of the adequacy of the available 
data to support a statistical characterization of background water quality (see Section V 
for more details on these terms).  It is necessary to accurately characterize background 
water quality based on a sufficient number of samples to determine average 



DRAFT - For Public review and comment 

StatGuidance 71707PublicDraft 8/3/2007 15

concentrations and variability at the site.  Background water quality should be calculated 
using the most current data available.  

Finally, if the available data are deemed adequate to justify such an analysis, summarize 
the results of the statistical characterization.   
 

  
Figure 3. Procedure for evaluating background ground water quality and data adequacy  
 
Appendices B through H provide some suggested methods to conduct the analyses shown 
in Figure 3.   

Data Compilation 
• Provide locations, sampling depth information, sampling frequency. 
• Documentation of accuracy, precision, relevance and representativeness. 
• List of proposed COCs that are relevant to the decision and justification. 
• For each COC, determine how non-detects will be handled (Figure 2). 

Evaluate data for statistical 
independence. (Appendix C)  

Exploratory Data Analysis: 
Provide descriptive statistics, graphical data 
summaries. (Appendix B) 

Determine if data are parametrically or non-
parametrically distributed (Appendix D) 

Evaluate data for secular (multi-year) trends 
(Appendix E) and for seasonality. (Appendix F) 

 Provide justification that sample size is 
adequate for statistical analysis. If 
adequate, summarize background 
characteristics; if not, specify an ACL. 
(Appendix A) 

If background data are pooled, document how, and 
provide justification. (Appendix G) 
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IV. Statistical Determination of Water Quality Degradation 
The term “degradation” is defined by the Ground Water Quality Rule “as the lowering of 
ground water quality as measured in a statistically significant and reproducible manner.”  
To be statistically significant and reproducible suggests that multiple measurements over 
time are required before degradation can be established.  The number of measurements 
and the length of time will likely be site-specific and dependent on the complexity of the 
situation. 

Once background ground water quality is established, the next step is to determine the 
concentration at which an exceedance would be statistically significant and constitute 
degradation.  Whatever statistical method is used, it shall provide a statistical decision 
threshold and a confidence level.  Future downgradient measurements will be compared 
to this threshold to determine if degradation has occurred. 

Some issues to be addressed when selecting an appropriate statistical decision threshold 
include: 

• Are the data adequate to justify a statistically based decision threshold?  (or would an 
ACL be more appropriate? see Appendix A)? 

• Is the activity being evaluated new to the site? (this determines how future 
downgradient water quality will be evaluated to identify site impacts). 

• Should interwell or intrawell comparison methods be used? (depends on whether 
upgradient and downgradient comparisons of wells are possible and defensible). 

•  Is a tolerance interval or a prediction interval appropriate and justified for the 
problem at hand? 

 
IV.1 Alternative Concentration Limit 

 
Alternative Concentration Limits (ACLs) for constituent(s) of concern are to be estimated 
when there are insufficient data to meet the statistical assumptions for a more detailed 
statistical analysis.  An ACL is to be used as an interim upper regulatory threshold in 
order to be fully protective of human health and the environment in situations where 
sufficient data are lacking to adequately define background water quality and/or an 
appropriate statistically defensible upper threshold based on background is not available. 
 
ACLs may also be used under certain circumstances, agreed to by all involved parties 
including DEQ, when a rigorous statistical evaluation is not desired, practical, or 
necessary. ACLs are to be established on a case-by-case basis in consultation with IDEQ.    
The ACL estimation process is described in Appendix A. 
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IV.2 New vs. Existing Activity 
 

An appropriate statistical decision threshold should be chosen in consideration of whether 
an activity is new or existing.  For example, the considerations recommended for 
wastewater land application sites are shown in Table 1. 
 
Table 1.  Considerations for Wastewater Land Application Sites 

Facility with no previous site impact (new or existing) Facility with existing site impacts 
• Downgradient wells can also be used to define 

background ground water quality 
• Only wells unaffected by the facility’s 

operation can be used to define the 
background ground water quality 

• Decisions are made via intrawell comparison • Decisions are made via interwell comparison 
(or intrawell, if warranted) 

• Upper tolerance limit (UTL) or Shewhart-
CUSUM control chart limits are used set 
decision threshold 

• Upper prediction limit (UPL) is used as a 
decision threshold 

• Multiple downgradient wells compared to 
background UTL or individual well compared 
to its control chart limits 

• Multiple downgradient wells compared to 
upgradient UPL; verify exceedance with two 
resamples 

 
IV.3 Interwell vs. Intrawell Analysis 

 
The objective of degradation analysis is to identify an appropriate background data set 
against which concentrations in wells potentially affected by a facility can be compared, 
so as to monitor the facility’s impact on local water quality.  Generally, interwell 
comparisons are appropriate where water quality is spatially homogeneous, sample 
locations provide statistically independent data, and appropriate upgradient - 
downgradient comparisons can be identified and defended.  Intrawell comparisons are 
usually applied in wells where water quality has not been impacted by site activities and 
therefore represents background water quality at that location.  However, intrawell 
comparisons may be preferable in certain situations where strong spatial variability exists 
or is impossible to assess using a single upgradient well (see Appendix N).  
 

IV.4 Decision Thresholds and Confidence Levels  
 
Decision thresholds that are commonly used in ground water monitoring analysis are the 
prediction limit, tolerance limit, and confidence limit. An upper prediction limit 
specifies the maximum allowed concentration that 100% of the next k comparisons must 
fall below in order to avoid an exceedance designation at a designated level of confidence 
(i.e. 95%) (EPA, 1992a); an upper tolerance limit specifies the upper limit that a 
designated percentage of all future comparisons (e.g. 95%) must fall below to avoid a 
designation of contaminated with a designated degree of confidence (e.g. 95%) (EPA, 
1992a); and a confidence interval brackets the range of a specified population parameter 
(e.g. the mean) at a designated level of confidence (i.e. 95%) (EPA, 1992a). Simultaneous 
intervals on multiple constituents are beyond the scope of this guidance; we assume that 
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future comparisons are made relative to historical background data on a constituent-by-
constituent basis.  

Prediction and tolerance limits are applied for compliance sampling in detection, 
assessment, and monitoring programs since only one initial sample per well is required 
during the compliance period. They are also used for establishing background-based 
ground water protection standards. Confidence intervals are most often used when 
comparing water quality measurements to a ground water standard which is based on a 
mean or median value (Virginia DEQ, 2003).  Before calculating these limits, it should be 
confirmed that the background data are statistically stationary, independent, and normally 
(or lognormally) distributed (see Section V for more details on these terms). 

Some rules of thumb to keep in mind when considering confidence intervals are:  

• Wider statistical intervals are associated with higher confidence levels.  However, 
too high a confidence level decreases the power of the test (the probability of 
detecting an exceedance) so the confidence level (1-α) should not be set higher 
than necessary.  Conversely, too low of a confidence level may result in an 
excessive number of exceedances.   

• The conservative choice when testing for a trend or a difference is to use a 
narrower interval or a lower confidence level (90% or 85%).  This would reduce 
the probability that a difference or exceedance may be missed.  In most cases a 
95% confidence level (α = 0.05) provides the best compromise between power 
and confidence. 

• For non-parametric methods in which the confidence level is dependent on 
sample size, the highest confidence level for the available sample size is typically 
selected.  Larger sample size may be needed to achieve a desired confidence 
level. 

 
IV.4.1. Intrawell Tolerance Limits 

 
At sites where ground water has not been previously affected by site activities, future 
water quality measurements will be compared to background water quality in the same 
well, via the intrawell upper tolerance limit(UTL).  The UTL sets the background water 
quality for each constituent of concern in each monitoring well; it is described in more 
detail in Appendix H.  Application of the method requires that the data are normally or 
lognormally distributed and have been corrected for seasonal effects or are temporally 
stationary.  For data that meet the above requirements but are not normally or 
lognormally distributed, a non-parametric UTL can be calculated.  Appendix I contains 
information on the sample sizes needed for non-parametric UTLs. 
 

IV.4.2. Interwell Prediction Limits 

In cases where site conditions indicate that the ground water quality in downgradient 
wells differs from background conditions (because of existing site practices), data from 
multiple downgradient wells will be compared to upgradient wells (an interwell analysis) 
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via a parametric upper prediction limit (UPL) calculated from pooled upgradient 
background data. 

Application of the method requires that the data be normally or lognormally distributed 
and corrected for seasonal effects.  For lognormal distributions, the UPL can be 
determined using the method outlined in Appendix J.  For data that meet the above 
requirements but are not normally or lognormally distributed, a non-parametric PL can be 
calculated (see Appendix K).  
 
In cases where background ground water quality data are non-stationary, the trend must 
be evaluated.  Water quality may show a trend in response to 1) natural circumstances or 
2) anthropogenic activities such as land use changes.  Regardless of the cause, the trend 
may disappear over time. The methods described in Appendix L can be used to establish 
interim decision thresholds until a new stationary background is achieved.   
 
Examples of application of the guidance to new and existing wastewater land application 
sites are provided in Appendix M and Appendix N, respectively. 
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V. Summary of Process 
 

V.1 Determination of Background Ground Water Quality 
 
New sites have the advantage that all monitoring wells, regardless if they are up-gradient 
or down-gradient, can be used as background monitoring wells.  For example, at WLAP 
facilities where land is converting from another land use (such as irrigated agriculture) to 
wastewater application, it is possible that some or all wells will not have attained a steady 
state condition (see below) or that down-gradient wells will have reached a different 
steady state condition than up-gradient wells. 
 
For a new site or new unused acreage at an existing site, such a WLAP facility that has 
yet to have any wastewater applied, the first step is to conduct descriptive statistics on the 
constituent(s) of concern in all background and compliance monitoring wells (Appendix 
B).  Following the initial descriptive statistical tests, each of the monitoring wells should 
be evaluated for data independence (Appendix C).  The form of the data distribution 
(parametric or non-parametric) should be determined next (Appendix D).  
 
Statistically significant seasonal trends for each of the constituent(s) of concern 
(Appendix E) are then evaluated and such trends removed to produce a seasonally 
stationary data set.  As the regulated entity is required to evaluate at least three years of 
quarterly data (where each quarter’s data represents the same month from year to year), 
some of the background water quality variation may be due to changing land use 
practices (e.g. nearby agricultural activities, stream and canal flow, etc.) or climatic 
changes (precipitation patterns, evapotranspiration, etc.).  The preferred method for 
determining seasonal stationarity is the non-parametric Kruskal-Wallis test (Appendix E). 
 
The resulting data set should then be checked for the presence of secular (long-term) 
temporal trends (Appendix F).  If a trend exists, then setting degradation thresholds may 
not be statistically valid and can lead to erroneous conclusions.  The recommended 
method for testing for temporal stationarity is the non-parametric Mann-Kendall test for 
trend. 
 
If the Mann-Kendall test shows that there is a statistically significant secular trend (either 
positive or negative), then an alternative method needs to be followed to set the 
standard(s) that the regulated entity will need to follow; see Section V.2.c. below.   If the 
Mann-Kendall test reveals no secular trends, the regulated entity can proceed to 
determine whether the data from multiple background wells can be pooled (Appendix G).   
 

V.2 Determination of Degradation  
 
At this point, background water quality has been rigorously evaluated and its statistical 
characteristics identified.  The next step is to define appropriate thresholds against which 
future measurements can be compared to identify potential water quality degradation. 
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V.2.a Intrawell Comparisons 
 
Parametric tolerance levels for intrawell comparisons can be set using the methodology 
provided in Appendix H.  An intrawell analysis compares future constituent levels in a 
well to the limit established by that well’s own background water quality.  In order to use 
this method, one must have a data set that (1) is stationary (free of secular trends and has 
no statistically significant seasonal effects or has been corrected for seasonality), (2) is 
normally or lognormally distributed, and (3) represents a site whose ground water has not 
been impacted by previous site activities.  Appendix I provides a methodology for 
determining non-parametric tolerance limits (where the same assumptions apply).  Future 
water quality for each COC in each well is to be compared to the upper tolerance limit in 
each well.  If the rate of exceedances in future measurements exceeds that used to 
establish the limit (e.g., 5% of all future measurements), then the site is deemed to be out 
of compliance.  Appendix N provides the Shewhart-CUSUM control chart method which 
monitors gradual and rapid site impacts. 
 
V.2.b. Interwell Comparisons 
 
The methodology for setting parametric prediction levels for interwell analyses is 
provided in Appendix J.  In this case, an upper prediction limit is defined on the basis of 
up-gradient water quality data. In order to use this method, one must have a data set that 
(1) is stationary (free of secular temporal trends and has no statistically significant 
seasonal effects or has been corrected for seasonality), and (2) has been found to meet the 
parametric distribution assumptions.  Site conditions must be such that the down-gradient 
well water quality can be compared to up-gradient water quality (an interwell analysis).  
Appendix K assumes the same conditions as Appendix J except the distribution is non-
parametric.  A specified number of future water quality measurements in down-gradient 
wells are compared to the upper prediction limit established in up-gradient wells; any 
exceedance is to be verified by the verification resampling procedure discussed in 
Appendix J.  
 
V.2.c. Interim Methodology for Trending Data 
 
Appendix M outlines a suggested procedure for setting an interim upper prediction limit 
for situations that violate the stationarity assumption (the data show a secular trend). 
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VI. Statistical Concepts 

 
VI.1 Glossary and Description of Statistical Terms 

 
Throughout this document, certain mathematical symbols will be reserved for quantities 
related to sample size such as the number of observations, number of years of sampling, 
and frequency of sampling within the year.  Other symbols will be used to denote the 
sample mean, standard deviation, and other sample-based statistics.  For reference, some 
of the frequently used symbols are summarized in Table 2. 
 
Unless stated otherwise, the symbols x1, x2, …, xN are used in this guidance to denote a 
chemical concentration measurement in each of N ground water samples taken at regular 
intervals during a specified period of time.  The subscript indicates the order in which the 
sample was drawn (e.g., x1 is the first or oldest measurement while xN is the Nth or latest 
measurement).  Collectively, the set of x’s is referred to as a data set, and in general xi 
will be used to denote the ith measurement in the data set.   
 
Table 2. Summary of Statistical Notation 

 

Symbol 
Definition 

xi Constituent concentration measurement for the ith ground water sample 
m The number of years for which data were collected (usually the analysis 

will be performed with at least 3 full years worth of data) 
n The number of sample measurements per year (for quarterly data, n=4).  

This is also referred to as the number of “seasons” per year. 
N The total number of sample measurements (for m complete years’ worth 

of data, N = nm). 
x  The mean (or average) of the chemical measurements in a sample of size 

N. 
s The standard deviation of the chemical measurements in a sample of 

size N. 
s2 The variance of the chemical measurements in a sample of size N. 

 
 

VI.2 Terminology/Definitions:  
 
A population is the set of all possible measurements of interest in the real world. For 
example, an aquifer’s nitrate concentration represents a population of all possible aliquots 
of water that could be collected from that aquifer and analyzed for nitrate.   
 
A sample is a set of measurements collected from the population in a manner that 
attempts to be representative and unbiased. In the preceding example, a sample might 



DRAFT - For Public review and comment 

StatGuidance 71707PublicDraft 8/3/2007 23

consist of 20 measurements (the sample size) collected at randomly chosen wells from 
across the aquifer. 
 
A parameter is a numerical measure of the characteristic of the population being 
sampled. Typical parameters are the population mean (μ), variance (σ2) or standard 
deviation (σ), and proportion (p). Parameter values are usually unknown.  
 
An estimate is a numerical measure of a parameter derived from a sample such as its 

mean ( x ), variance (s2) or standard deviation (s), and proportion (
^
p ).  

 
Inference is the process applied to estimate a population’s parameter(s) from the sample. 
The parameters are usually the targets of our interest but, because it is impossible or 
prohibitive to collect every measurement from the population, they are usually unknown. 
There are two approaches to making inferences: estimation and hypothesis testing. The 
first answers the question, “what is the value of the parameter?” and the second answers 
the question, “Does the parameter meet this specific value?” In groundwater analysis, the 
corresponding questions might be “what is the nitrate concentration in the groundwater?” 
or “does the nitrate concentration meet State standards?”.  
 
Data independence is the most basic requirements of statistical inference.  All measured 
values in a sample are assumed to be random.  In a time-series sense, a measurement 
must not depend on—or affect—any prior or future measurement.  In a spatial sense, a 
measurement made in one well must be independent of those made in other wells.  Data 
that violate this requirement (e.g., as in replicate measurements collected over a short 
time span in the same well) carry redundant information that biases the calculation and/or 
inference of any statistical quantity based on it.  See Appendix C for further information. 
 
The sample distribution is the frequency or probability of occurrence of the measured 
values. In groundwater analysis, two commonly encountered distributions are the normal 
distribution (bell-shaped curve) and the log-normal distribution (having the normal 
shape when values are logarithmically transformed).  Transformation of the data to a 
normal distribution via a mathematical function is often necessary for environmental 
data, prior to statistical analysis. Estimates derived from a random sample, (e.g., x ) are 
also random; different samples generate different estimates.  Estimates derived from 
different samples of the same population are known as the Sampling Distribution.  
 
Many common statistical methods are based on a knowledge of, or the assumed 
characteristics of, the sampling distributions.  One of the most famous is the Central 
Limit Theorem which says that the sampling distribution of the mean of many 
independent random samples is normal regardless of the underlying distribution of the 
population that was sampled.  



DRAFT - For Public review and comment 

StatGuidance 71707PublicDraft 8/3/2007 24

 
VI.3 Methods for Describing a Distribution 

  
Data need to be summarized in order to make meaningful interpretations and to pose 
testable hypotheses. Data summarization can be graphical or numerical. Graphical 
methods emphasize the shape of the distribution and numerical methods emphasize its 
central tendency and dispersion. 
 
Graphic methods 
Histogram summarizes the frequency distribution of a data set by displaying the number 
of observations that fall in defined intervals. Suggested numbers of intervals is 5-15, but 
the number of intervals can greatly affect the visual appearance of the distribution. The 
Y-axis can either be the number of occurrences in each interval or the percentage of total 
occurrences.  
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Figure 3. Example Histogram 
 
Box plot is schematic representation of a distribution. The following values are 
summarized in a box plot: the box - the center 50% of the data (bounded by 25% and 
75% of the observed values), the line in the box is the median, the whiskers are the upper 
and lower adjunct values. Generally, the upper adjunct value is the value 1.5 times the 
interquartile range (IQR) away from the 75% observed value and the lower adjunct value 
is the value 1.5 times IQR away from the 25% observed value. Interquartile range 
(IQR) is the difference between Q3 and Q1, showing the dispersion of the center-most 
50% of the data. The IQR is robust to extreme values but cannot describe the overall 
nature of the dispersion.  
 
Observations beyond the upper and lower adjunct values are extreme values; an extreme 
value in a data set is NOT necessarily a bad observation that needs to be removed. Box 
plots summarize a sample’s central tendency, spread, skewness and extreme values. Side-
by-side box plots are a useful tool for comparing the distributions of different samples or 
groups of measurements.  
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Figure 4. Example Box Plot 
 
Time-series plot shows the values of observations on the y-axis vs. corresponding times 
they were collected on the x-axis. Equal-spaced time points are desirable. A time-series 
plot is useful for examining general trends over time, evaluating seasonal or cyclical 
patterns and disrupting events (such as the effect of a drought year on water quality). If 
the data points are not collected in equal time intervals, it is important to reflect the 
interval width between time points in the plot. Otherwise, the apparent visual trend could 
be misleading.  
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Figure 5. Example Time-series Plot 
 
Scatter plot is used to examine the relationship between two variables, x and y. Each 
point on the scatter plot represents a pair of measurements of x and y from the same 
source, e.g., TDS and NO3-N concentration in the same well sample. Usually we are 
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extreme 
values 
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interested in determining if there is a linear or non-linear correlation between the two 
variables.  

Corrrelation Between NO3-N and TDS

0.4

0.6

0.8

1

1.2

1.4

1.6

2.6 2.65 2.7 2.75 2.8 2.85 2.9
Log(TDS)

Lo
g(

N
O

3_
N

)  
 

 
Figure 6. Example Scatter Plot 

 
Numerical Methods 
Central tendency is a distribution’s “center of mass”.  Common measures of central 
tendency include the mode, median and mean. The mode is the most frequently occurring 
value in a data set.  Distributions can have more than one mode (bimodal, trimodal, etc.).  
 
Median is the middle value of a data set. It is the 50th percentile of a distribution, in 
which half of the observations are less, and half are greater, than the value. In a data set 
whose N observations are arranged from smallest to largest, the location of the median is 
(N+1)/2 from the bottom of the list (or the average of the two middle observations).  
 
Mean or arithmetic mean or average is the sum of N observations divided by N. The 
goal of statistical inference is to estimate the population mean (μ) from the sample mean.  
The sample mean ( x ) is calculated as: 

N

x
x

n

i
i∑

== 1  

where N is total number of observations in the sample. The mean is sensitive to extreme 
values in a given data set and therefore may not always represent a distribution’s central 
tendency. The median is robust to extreme values and thus is a better measure of central 
tendency in skewed distributions. For a symmetric distribution, the mode, mean, and 
median are the same; for skewed distributions, they are different. The following graphs 
show their relationships in various distributions.  
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Figure 7. Mode, median, mean for various distributions  

(from left to right: symmetric, positively skewed and negatively-skewed) 
 
Dispersion is the spread or variability around the central tendency. Common measures 
include the range, interquartile range (IQR), variance and standard deviation. Range is 
the difference between the largest and smallest values in a data set. Although it is simple 
to calculated, it is least useful in describing dispersion since it reflects the extreme values. 
A better measure involves the use of quantiles. The pth quantile of a data set is the value 
that p percent of the observations are less than or equal to. The most common quantiles 
are the 25 th (Q1 or first quartile), 50 th  (Q2 or median) and 75th (Q3 or third quartile).  
 
The variance of a sample data set is the average of the squared deviations of the 
observations from the mean. It is calculated as: 
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The standard deviation (SD) is the square root of the variance, 2ss = . For a normal 
distribution, the following empirical rule applies: 68% of the measurements are within 
one SD of the mean, 95% are within two SDs and 99% are within 3 SDs of the mean.  
 
x and s or s2 are the most commonly used descriptive statistics for a distribution’s central 
tendency and dispersion. However, they are most appropriate for symmetric distributions 
because the are sensitive to extreme values. To adequately characterize a skewed 
distribution, the range, Q1, median, and Q3 should be reported.  
Skewness is the third moment of a distribution and measures its asymmetry. Skewness is 
zero for a symmetric distribution and either positively skewed (skewed-to the-right) or 
negatively skewed (skewed-to-the-left) for asymmetric distributions. In a positively 
skewed distribution, the measurements tend to cluster around smaller values and tail 
toward larger values.  

Kurtosis is the fourth moment of a distribution and measures the sharpness of its peak.  
Kurtosis for a normal distribution is equal to 3.0. A kurtosis greater than 3.0 (or zero in 
some statistical packages, which subtract 3 from calculated moment) indicates a 
distribution that is more sharply peaked than a normal distribution.  The example in 
Figure 8 shows different example distributions, one with a kurtosis of >1 (red,), one with 
zero kurtosis (blue, a normal distribution) and one with a kurtosis of <0 (green).  
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Figure 8. Example of some distributions with various degrees of kurtosis (peakedness).   
 
 

VI.4 Inference: Estimating Decision Thresholds 
 
Some decision thresholds that are commonly applied in ground water analysis are the 
prediction limit, tolerance limit, and confidence limit. An upper prediction limit is the 
value, based on existing measurements and a specified level of confidence, below which 
the next k future measurements are expected to fall.  An upper tolerance limit is the 
value defined at a particular confidence level for a specified percentage of all future 
measurements.  In contrast, a confidence limit defines a permissible range for a specified 
population parameter (e.g., the mean) at a specified level of confidence.  All three limits 
are calculated from historical background data on a constituent-by-constituent base and 
are used to compare future measurements to determine whether the sampled population 
has changed (as by contamination).  
 
Prediction and tolerance intervals are applied for compliance sampling events in 
detection, assessment, and monitoring programs and can be used for establishing 
background-based ground water protection standards (EPA, 1992a). Confidence intervals 
are often applied for comparing measurements to a ground water standard which is based 
on a mean or median value (Virginia DEQ, 2003). Before such intervals are calculated, 
the background sample distribution should be checked for normality or lognormality, 
stationarity and data independence.  

 
Upper prediction limit (UPL): 

 
UPL = Ksx +  
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Where K is the one-sided normal tolerance factor that can be found tabulated in various 
ground water monitoring guidance documents (Gibbons, 1994; EPA, 1992a).   As 
Gibbons (1994) has pointed out, K must be calculated for a specified statistical model 
which includes a verification sampling protocol, background sample size, and k, the 
number of relevant1 future measurements that will be compared within a specified time 
period).  See Appendix J for an example table of K factors.  If any constituent of concern 
exceeds the UPL during the comparison time period, then further sampling according to 
the verification sampling protocol is conducted to verify the exceedance.  
 
Upper tolerance limit (UTL): 

UTL = Ksx +  
Where K is the one-sided normal tolerance factor defined for a specified fraction (the 
“coverage”, e.g., 95%) of all future comparisons (Gibbons, 1994; EPA, 1992a).  A 
specified number of exceedances are allowed as long as their total number is no greater 
than the specified percentage of comparisons made since the UTL was set (e.g., 5% for 
95% coverage. 
 
Upper confidence limit (UCL):  

UCL = 
n
stx n α,1−+  

where x , n and s are the average, number and standard deviation of the background data, 
respectively, and t is the t-statistic with n-1 degree of freedom at a 1-α upper-tail 
confidence.  
  
If the data are log-normally distributed, all of the above limits should be calculated on a 
log-transformed scale and compared with data that have also been log-transformed.  

 
VI.5 Inference: Hypothesis testing 

 
The second common type of statistical inference is aimed at answering the question, 
“Does the population parameter meet a specific condition or value?” For example, does 
the mean NO3-N concentration of the upgradient wells around a land application facility 
exceed the 10 mg/L Idaho Ground Water Quality standard?  The question is assessed by 
examining the sample characteristics relative to a statistical hypothesis concerning the 
population’s characteristics.  
 
A statistical hypothesis is a statement about a parameter in a population and a hypothesis 
test is a formal procedure for comparing the sample data with a hypothesis whose truth 
we want to assess (Moore and McCabe, 1998). The results of a test are expressed in terms 
of a probability that expresses how well the hypothesis agrees with the data.  

                                                 
1 Any measurement that is deemed useful for detecting the monitored facility’s impact.  The number of 
future comparisons is defined on the basis of number of constituents of concern examined per well, number 
of wells, sampling frequency and duration of the comparison time period.  See Appendix J for details. 
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A hypothesis test involves four steps: 
 

1) State the hypotheses and confidence level:  a null hypothesis (H0) is the 
statement being tested; an alternative hypothesis (HA) is the statement we will 
accept should H0 be rejected. The significance of the test, α, is the 
compliment of the confidence level (1-α) and indicates the strength of the 
evidence against the null hypothesis. The smaller the α, the less the chance of 
falsely rejecting H0.   

 
2) Choose and compute the test statistic. A test statistic provides a quantifiable 

measure for deciding between H0 and HA.  Some examples are the t statistic 
and the F statistic.  

 
3) Find a p-value based on the test statistic. The p-value is the lowest 

significance level at which H0 can be rejected (or the probability of obtaining 
a test statistic as extreme as or more extreme than that calculated from the 
sample, if H0 were true).  

 
4) State the conclusions based on a decision rule: 1) if the p-value is less than α, 

then reject H0 and accept HA;   2) if the p-value is greater than or equal to α, 
then we cannot reject H0 based on information provided in the data set.  Both 
decisions are made at an α significance level (1-α confidence level).  

 
Two types of errors are associated with any hypothesis test, A Type I (false-positive) 
error occurs when falsely rejecting H0; a Type II (false-negative) error occurs when 
falsely accepting H0. For example, if the null hypothesis, H0, asserts that ground water is 
not contaminated, a Type I error is to claim that contamination exists when it actually 
does not. A Type II error would claim that ground water is not contaminated when it 
actually is.  The risks of committing the two types of errors are α and β, respectively and 
they are complimentary: specifying a low value of α means accepting a high β; α = 0.05 
is usually considered an acceptable trade-off between the two risks.  Just as (1- α) is the 
confidence level of a hypothesis test; (1-β) is the power of the test (the likelihood of 
identifying contamination if it is present). Type II errors are more likely for small sample 
size, so β should be considered at the time of sampling design.  Sample size should be 
large enough to detect differences in population parameters with a power of at least 80% 
and will vary depending on the confidence level. 
 

VI.6 Sample size 
 
Sample size affects both estimation and hypothesis testing. For estimation, it determines 
the estimate’s precision, and for hypothesis testing, it affects the power of the test.  
Sample size depends on the type of statistical test chosen and also on measurement 
precision.  A large sample size is almost always desirable. Having many observations can 
make trivial differences detectable. The goal of determining sample size in a statistical 
study is to find the number of samples which provides adequate yet practically feasible 
evidence to draw meaningful conclusions relative to the goals of the study. It is always 
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good practice to state the problem first and then set up decision rules to address the 
problem.  
 
For ground water analysis, at least twelve background samples must be available for 
determining decision thresholds and for making interwell comparisons. The samples must 
be statistically independent and representative of seasonal and spatial variability at the 
site. For this reason, the eight samples preferably should be collected quarterly over a two 
year period in a well. For interwell comparisons with two upgradient wells reflecting 
statistically indistinguishable chemistry, one year of quarterly data for each well is 
required (if the two wells’ chemistries are different, then two years of quarterly data at 
each well should be available). Statistical analysis can be conducted with smaller data 
sets, but smaller sample size usually leads to such wide prediction intervals that no 
meaningful conclusions can be drawn.  The statistical requirements of the various 
analysis methods should be understood so adequate numbers of samples are collected 
prior to analyzing the data.  
 

VI.7 Non-parametric methods 
Data sets having a normal or log-normal distribution should be analyzed with parametric 
methods. Parametric methods are more powerful because the actual values of the 
measurements are used in the analysis. Parametric methods assume some knowledge of 
the shape of the distribution (i.e. normal or lognormal) and use the measured data values 
to estimate population parameters. For example, the t-test is a parametric method for bell-
shaped distributions (either in original scale or transformed scale) that are centered at μ 
with a dispersion of σ.  
 
Sample distributions that do not have a normal or log-normal form, can be analyzed with 
non-parametric methods that don’t require assumptions about the form of the population 
distribution. The only requirement is that the population distribution be continuously 
valued; additionally, if two populations are to be compared, then they should have the 
same shape.  
 
It is common that sample size is inadequate to determine whether a particular distribution 
is parametric, or that the number of non-detects is too large to determine the form of the 
distribution. In such cases, non-parametric methods can be used both for establishing 
background levels and for hypothesis testing. These methods do not require assumptions 
about the form of the distribution and can be used to estimate parameters or to test a 
hypothesis.  
 
Some common non-parametric methods used in ground water analysis are based on ranks 
of the data but not the actual values.  Data values are ordered from lowest to highest and 
ranked according to their position in the ordered list. Commonly used rank analysis 
methods include the Wilcoxon signed rank (non-parametric equivalent of the one-
sample t-test), Wilcoxon rank sum test or Mann-Whitney’s test (non-parametric 
equivalent of the two-sample t-test), Kruskal-Wallis (non-parametric form of the 
multiple-sample ANOVA test) and non-parametric regression. As for parametric 
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methods, statistical independence of the observations is required for all non-parametric 
methods.  
 
The Kruskal-Wallis test for seasonality can be used to test for the presence of 
significant seasonal fluctuations in a time-series data set.  Mann-Kendall’s test for trend 
shows if a significant secular trend exists, and Sen’s test estimates the slope of the trend, 
regardless of the presence of missing observations or variable sampling time intervals. 
 
Non-parametric prediction and tolerance limits are based on the maximum values 
observed in N background measurements, where sample size depends on confidence level 
and future comparison strategy (Appendix I and K). Confidence level in turn is a function 
of the number of future comparisons (k) and the exceedance verification sampling plan. 
These methods require very large background sample sizes if k is large or if α is small, so 
that trade-offs are usually required. 
 
Bootstrap and Jacknife resampling methods are recently developed non-parametric 
methods for making statistical inference. Basically, the original sample data set is 
randomly resampled thousands of times and statistics of interest recomputed each time. 
The calculated statistics from all resampled data sets are used to estimate the relevant 
sampling distributions. In the Bootstrap method, resampling is conducted with 
replacement (of size N, the original sample size). In the Jacknife method, resampling 
systematically leaves out one value from the original data set each time (sample size = N-
1).  Unfortunately, small sample size is a major limitation because the resampling method 
assumes that the original data set is representative of the underlying population. These 
methods are computer-intensive but demonstrate growing potential for environmental 
statistical analysis. Their technical aspects are beyond the scope of this document. IDEQ 
leaves it to the regulated entity to choose the methods that best fulfill the objectives of the 
statistical analysis but retains the right to ask for alternative methods if they prove to be 
more appropriate.  
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Appendix A. Alternative Concentration Limits 

 
Alternative Concentration Limits (ACLs) for constituent(s) of concern are estimated 
when there are insufficient data to meet the statistical assumptions for a more detailed 
statistical analysis. 
 
The following three measures of upper concentration limits are calculated from available 
data.   

• =1ACL  the largest of the 12 most recent data values collected 

• s65.1ACL2 += mean   

• IQR*65.1medianACL3 +=   (where IQR = the interquartile range) 
 
IDEQ specifies that the lowest of these limits is then to be used as an interim upper 
regulatory threshold in order to be fully protective of human health and the environment 
in situations where sufficient data are lacking to adequately define background water 
quality and/or an appropriate statistically defensible upper threshold based on background 
is not available. 
 
ACLs are to be established on a case-by-case basis in consultation with IDEQ.   
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Appendix B. Exploratory Data Analysis/Descriptive Statistics 
 

B.1 Descriptive Statistics  
 
Once adequate data have been collected, the data should be analyzed using descriptive 
statistics to describe the overall population.  At a minimum, the regulated entity should 
calculate the mean, standard deviation, skewness, median, minimum, and maximum for 
each constituent at each monitoring well and summarize the sample size for each 
constituent.  In addition, the regulated entity should produce a visual representation of the 
distribution of each constituent (e.g., box plots or histograms) and concentration versus 
time plots for each well and each constituent. 
 
As has been previously stated, the reason for collecting data is to try to understand the 
distribution of the true population.  The sample mean provides a measure of the central 
tendency of the population, whereas the sample standard deviation provides a measure of 
its spread, or dispersion.  The measurements represent just one of many possible subsets 
of data that could have been collected from the entire population.  Different samples will 
obviously lead to different values of the sample mean and sample standard deviation.  
These differences are the reason why statistical intervals are used to infer population 
parameters and set decision thresholds. 
 
In any set of data, it is possible that there will be outliers.  Outliers can have one of three 
causes: (1) a measurement or recording error, (2) an observation from a different 
population, or (3) a rare event from the tail of the population of interest.  If an outlier’s 
cause cannot be detected or corrected, it should not be discarded from the data set. 
 
Summary statistics can be calculated using any appropriate software (e.g., SPSS 2000’s 
SysStat package; Microsoft’s Excel, etc.).  See Table B.1 for an example. 
 
Other descriptive statistics include the median, minimum, maximum, and quartiles.  The 
median and quartiles are not affected by outliers unlike the sample mean, standard 
deviation, and skewness.   
 
A graphical summary of the data, including the relevant COCs, should provide box plots, 
showing at least the median, minimum, maximum, and quartiles for each constituent of 
concern and time-series plots.  The latter provide a visual indication of whether there is a 
seasonal component to the data, whether there is a secular (long-term) trend, and/or 
whether the trend has changed or may be changing (approaching a new steady-state 
condition).  
 

B.2 Example 
 
Where appropriate, data from the following scenario will be used to illustrate selected 
applications in the various appendices of this guidance document.  A wastewater land 
application facility wants to determine a background water quality level for TDS, above 
which there is a certain degree of statistical confidence that values would indicate 
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impacts to ground water.  The facility has two background wells (#B1 and #B2).  Well 
#B1 is located near an irrigation canal and the canal may seasonally influence the water 
quality.  Well #B2 is located away from the irrigation canal.  Three years of quarterly 
data have been collected at each monitoring well.  Table B.1 contains the TDS data in 
parts per million (ppm) and an example of the summary statistics for TDS. 
 
Table B.1. Data (parts per million) and resulting descriptive statistics for example 
scenario. 

Time Index TDS  
Well #B1 

TDS 
Well #B2 

Year 1 1st quarter 305 252 
Year 1 2nd quarter 228 251 
Year 1 3rd quarter 258 245 
Year 1 4th quarter 259 252 
Year 2 1st quarter 285 260 
Year 2 2nd quarter 210 248 
Year 2 3rd quarter 274 275 
Year 2 4th quarter 240 272 
Year 3 1st quarter 290 256 
Year 3 2nd quarter 216 246 
Year 3 3rd quarter 248 218 
Year 3 4th quarter 235 225 
Descriptive 
Statistics1 

  

Mean 254 250 
Variance 904 268 
Standard Deviation 30.0 16.4 
Skewness 0.20 -0.52 
Minimum 210 218 
Maximum 305 275 
Median 253 252 
1st quartile 231 246 
3rd quartile 290 258 

1 Excel software used for calculations 
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Figure B.1 Box plots for example data (from systat 10) 
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Figure B.2 Time versus concentration graph for example 
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Appendix C. Data Independence 

 
C.1. Introduction and Background 

 
All of statistical theory and practice is based on three fundamental premises.   
 

1) First, every collection of measurement represents a purely random sample of the 
underlying population that is free of any bias imposed by considerations such as 
the sampling process, the name of the individual who conducted the sampling, or 
the analytical method used to make the measurements.   

 
2) Second, the statistics of multiple samples collected from the same population are 

expected to fluctuate because of randomness; however, these fluctuations are 
assumed to bracket the underlying population statistics, allowing us to infer them 
from any sample (a statistical property known as ergodicity).   

 
3) Third, and perhaps most important from a practical statistical standpoint, data are 

assumed to be independent, that is each measurement is randomly representative 
of the target population and independent of any other measurement.  Dependent 
samples exhibit less variability resulting in the underestimation of the sample 
variance, which in turn affects the calculation of prediction limits and tolerance 
limits.  

 
In reality, every measurement of the physical world possesses some degree of 
dependence on (similarity to, correlation with) previous or nearby measurements; this 
dependence is known as autocorrelation.  For example, replicate measurements of stream 
chemistry are much more similar to (dependent on) each other than measurements 
collected a year apart.  In another example, when drawing water from five different wells 
(n = 5), four aliquots of water from a single well are analyzed for quality control 
purposes.  When calculating the average nitrate concentration in the five wells, the 
replicates cannot be treated as separate, random outcomes in a sample of n = 9 
measurements, because they constitute redundant information about the population. If 
nitrate in that one well happens to be twice the average concentration of the other four 
wells, and we do average all 9 measurements together, then the apparent mean nitrate 
concentration would be biased high by 50% and the apparent variance would be far lower 
than the actual sample variance.   
 
To avoid such bias and the ensuing decrease in the power of hypothesis tests and decision 
thresholds that it entails, every statistical procedure in this document assumes that the 
data analyzed are independent.  Unfortunately, this is an area in which little guidance is 
available.  For temporal data, two different approaches have been taken: one 
demonstrating physical independence based on the minimum time required for water to 
move past a well (EPA, 1989), and another, demonstrating statistical independence on the 
basis of historical time-series data (Barcelona et al., 1989; Oswina et al., 1992; Johnson et 
al., 1996; Ridley and MacQueen, 2005).   
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C.2. Example: Evaluating Data for Temporal Independence 

 
Significantly more attention has been given to the issue of temporal autocorrelation than 
to spatial autocorrelation.  The basic requirement is that sufficient time is allowed 
between sampling events to assure independence between samples.  This can be 
evaluated with standard time-series analysis methods, but where sample size is too small 
(N < 12) for a time-series analysis, a method proposed by Ridley and MacQueen (2005), 
based on decision-tree logic and changes in concentration, could be adopted as an interim 
guide to determining minimum sampling frequency until sufficient data are collected to 
perform a statistical time-series analysis.  Where data have been collected on a monthly 
or more frequent schedule, the goal of time-series analysis is to determine data properties 
by adjusting the temporal dependence and determine the sampling frequency that ensures 
data independence.  In most cases, this will not be possible given the availability and 
frequency of measurements in most monitoring campaigns.  In the absence of appropriate 
historical data, a general rule of thumb is that groundwater quality data should not be 
collected more frequently than quarterly (Gibbons, 1994, p. 163, 185) and if replicate 
analyses or more frequent time-series data have been collected, that the average of 
replicates (Washington State, 2005) or the average of multiple measurements collected 
within a quarterly span be used as the quarterly value.   
 
Where appropriate data are available and are regularly spaced in time, autoregression 
analysis can be performed in most common statistical software (e.g., Box-Jenkins 
autocorrelation plots).  For irregularly spaced data, a one-dimensional semivariogram 
(Oswina et al., 1992) can be computed using various geostatistical software packages.  
However, if the sampling frequency of the available data is no better than quarterly then 
in most cases there is little or no benefit to be gained from such an exercise.  As an 
example, the TDS data in Figure C.1 represent varying sampling intervals over a 3-year 
period, with an indication that monthly measurements tend to be fairly similar 
(autocorrelated).  A Box-Jenkins analysis is inappropriate in this case, unless it is 
conducted only on evenly-spaced quarterly data.  The resulting autocorrelation plot is 
shown in Figure C.2.  The autocorrelation statistic is a function of lag (separation in 
time); it decays rapidly from zero-lag where autocovariance equals the population 
variance to a value near 0.0 at a lag of 180 days.  This suggests that TDS measurements 
are statistically independent if collected at a frequency no greater than once every 180 
days.   In this case, the conclusion is erroneous because monthly measurements were not 
considered.   
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 Figure C.1. Example groundwater TDS measurements for evaluating 
statistical independence of time-series data. 

 
 

Figure C.2.  A Box-Jenkins autocorrelation function plot  

This Box-Jenkins autocorrelation function plot was created for the quarterly spaced TDS 
data in Figure C.1.  The value of the autocovariance statistic decays to zero at a lag of 
about 180 days, suggesting that measurements spaced two quarters apart are statistically 
independent. 
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  Figure C.3.  Semivariogram 

The semivariogram statistic (Isaaks and Srivastava, 1989) computed for all of the TDS 
data in Figure C.1, showing that the time-series data are statistically independent (pair-
wise variance = population variance) if measurements are made at least 90 days apart 
(i.e., quarterly).    
 
In order to determine the true minimum sampling interval allowed by the historical 
record, all of the data, including monthly measurements, must be considered.  For 
irregularly sampled data, a one-dimensional semivariogram analysis can be performed 
with most geostatistical software (Oswina et al., 1992; Johnson et al., 1996); such a plot, 
utilizing all of the data in Figure C.1, is shown in Figure C.3.  The value of the 
semivariogram statistic rises rapidly to a sill value that is at or near the population 
variance.  The lag at which it achieves the sill (approximately 90 days) represents the 
minimum time interval (quarterly) for measurements to be considered statistically 
independent. 
 
In this case, the semivariogram's temporal resolution is better than the Box-Jenkins plot 
because the data set contained measurements that were collected on a much shorter time 
interval than the Box-Jenkins plot could resolve with only quarterly data.   
 
 

C.3. Evaluating Data for Spatial Independence 
 
If existing guidance for evaluating temporal data independence is minimal, it is almost 
completely absent for spatial evaluations.  Ideally, geostatistical data analysis could be 
applied to two-dimensional data sets in the same way that the one-dimensional 
semivariogram of Figure C.3 was applied to temporal data, the difference being that lags 
are defined in a spatial rather than a temporal sense.   
 
As in the temporal situation, two approaches are possible for estimating the minimum 
spatial scale over which groundwater data can be considered independent: one based on 
physical considerations and another based on spatial statistical analysis (e.g., Bertolino et 
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al., 1983; Cameron and Hunter, 2002; Manly and Mackenzie, 2003).  Such methods have 
limited applicability in small sampling networks (20-30 wells), however, and rarely are 
useful for small networks (< 5-10 wells).  Figures C.4 and C.5 illustrate this point 
conceptually.  Both the number and spacing of historic monitoring locations (as well as 
the type and availability of data at each well) determine how useful the geostatistical 
analysis can be. 
 

 
Figure C.4. Semivariogram with sufficient data 
Hypothetical monitoring network in which there is a sufficient number of monitoring wells whose 
water quality data can be used to construct well-defined semivariogram statistics to identify the 
minimum well spacing for independent data. 
 
 

 
Figure C.5. Semivariogram with insufficient data 

In almost all small monitoring networks there are insufficient wells to calculate reliable 
semivariogram statistics.  Therefore, the minimum well spacing required for data 
independence cannot be determined. 
 
As Gibbons (1994) and others have pointed out, the spatial hydrochemical variability of 
the site is as important as interwell spacing considerations.  That is, if the aquifer is 
highly heterogeneous, then the assumption of spatial data independence may be violated 
for a different reason: the physical bias imposed on contaminant concentrations in active 
vs. inactive flow zones.  That is, a well completed in a hydraulically "tight" zone will 
tend to reflect lower values of contaminant concentration than wells in more 
hydraulically active zones.  It is for such reasons that intrawell evaluation methods may 
be the only rational alternative in highly heterogeneous aquifers (Gibbons, 1994). 
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In evaluating data independence in a spatial sense, IDEQ suggests foregoing a purely 
statistical evaluation of data independence in favor of a qualitative assessment, including 
but not limited to: 
        a) estimation of groundwater flow velocity between wells; in general, minimum 

permissible spacing tends to increase with groundwater flow velocity and with 
dispersivity; 

        b) examining the available data for concentration trends across the facility; if 
present, a spatial trend can strengthen autocorrelation in the direction of the trend 
and weaken the assumption of spatial independence in that direction; 

        c) an evaluation of overall site variability; if data from multiple upgradient wells 
cannot be pooled due to hydrochemical variability and if considerable hydraulic 
heterogeneity is known or suspected, then intrawell methods should be adopted if 
at all possible. 

 
In the event that large spatial variability exists and/or the statistical independence of 
pooled upgradient data is suspect, intrawell analysis options should be explored.  IDEQ 
may grant site-specific variances for intrawell analysis, utilizing modifications of the 
methods contained in this document or other methods such as those discussed in 
Appendix N. 
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Appendix D. Determination of Normality 

 
D.1 Testing for Normality Using the Shapiro-Wilk Test 

 
The primary reason to test whether data follow a normal distribution is to determine 
whether or not parametric test procedures can be employed.  This is especially true when 
using tolerance intervals (EPA, 1988; EPA, 1992b).  The null hypothesis (H0) for any test 
of normality is that the data are normally distributed.  Failure to reject H0 does not prove 
that the data do follow a normal distribution, especially for small sample sizes, only that 
normality cannot be rejected with the evidence available.  Use of a significance level (α) 
greater than 0.05 will increase the power to detect non-normality, especially for small 
sample sizes (Helsel and Hirsch, 1995). 
 
The method described below is known as the Shapiro-Wilk Test for Normality.  It is used 
for data sets with less than 50 data points.  This method is recommended (EPA, 1988; 
EPA, 1992b; Fisher and Potter, 1989) as it is superior to the chi-square test (EPA, 1992a) 
and because it is based on probability plots (Helsel and Hirsch, 1995).  The Shapiro-Wilk 
test is designed for data with less than 10-20% censoring, censored measurements up to 
this limit should be withheld from the calculation.  If censoring is greater than 20%, then 
either Royston's method (Royston; 1993) or an appropriate adjustment to the sample 
standard deviation (Cohen, 1991. Aitchison, 1955) must be applied when using the 
formulae, below.  The test is based on the premise that if the sets of data are normally 
distributed, then the ordered values should be highly correlated with corresponding 
quantiles taken from a normal distribution (Shapiro and Wilk, 1965).  The Shapiro-Wilk 
statistic “W” is proportional to the ratio of the squared slope of the normal probability 
plot to the usual mean square estimate (Gibbons, 1994): 
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Alternatively, the formulas and example given below can be used as a guide (taken from 
EPA, 1992a).   
 

D.2. Example 
 
Consider the TDS data for well #B1 (Appendix B). The null hypothesis is H0: distribution 
is normal. The coefficients ai,n for the W statistic are given in Table D.2 (see Gibbons, 
1994 for a more complete table).  Recalling that s is the standard deviation, W can be re-
expressed as: 
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The general procedure is: 
Step 1. Order the data from smallest to largest and list, as in Table D.1.  Also list the data  

in reverse order alongside the first column. 
Step 2. Compute the differences x(n-i+1)-xi in column 3 of Table D.1 by subtracting  

column 1 from column 2. 
Step 3. Compute k as the greatest integer less than or equal to n/2.  k=(n-1)/2 if n is odd 
 and k=n/2 if n is even. Since n=12, k=6 in this example. 
Step 4. Look up the coefficients an-i+1 from Table D.2 and list in column 4.  Multiply the  

differences in column 3 by the coefficients in column 4 and add the first k  
products to get the quantity b. 

Step 5. Compute the standard deviation of the sample (9.77) and calculate W (0.861). 
Step 6. Compare the computed value of W to the 5% critical value, equivalent to an α 

value of 0.05 (see Table D-3) for a sample size of 12 (0.859).   
 

Table D.1 Example of Shapiro-Wilk Test for Normality on TDS Data from Well #B1 
Column Column 1 Column 2 Column 3 Column 4 Column 5 

Ranked data 
value 

xi x(n-i+1) x(n-i+1)-xi an-i+1 bI 

1 242 268 26 0.5475 14.4175 
2 244 268 24 0.3325 7.869167 
3 246 266 20 0.2347 4.694 
4 246 264 18 0.1586 2.8548 
5 249 252 3 0.0922 0.245867 
6 251 252 1 0.0303 0.0404 
7 252 251 -1  b=30.12 
8 252 249 -3   
9 264 246 -18 Std_dev =  9.77 

10 266 246 -20   
11 268 244 -24 W =  0.8612 
12 268 242 -26   

 
The closer the value of W is to 1.0, the greater is the support for the normality 
assumption.  The assumption of normality is rejected if the computed value of W is less 
than W’s critical value in Table D.3.  In this example, the null hypothesis is accepted 
because W (0.861) is greater than the critical value (0.859). Therefore, the data are 
normally distributed.  
 
Table D.2 Partial List of Coefficients ai for the Shapiro-Wilk Test of Normality 
# of data 8 9 10 11 12 13 14 15 16 

k          
1 0.6052 0.5888 0.5739 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 
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2 0.3031 0.3244 0.3291 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 
3 0.1743 0.1976 0.2141 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 
4 0.0561 0.0947 0.1224 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 
5  0.0000 0.0399 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 
6    0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 
7      0.0000 0.0240 0.0433 0.0593 
8        0.0000 0.0196 
          

(Complete tables in Shapiro and Wilk, 1965; EPA, 1992a; Gibbons, 1994) 
 
 
Table D.3 Lower 1% and 5% Critical Values for Shapiro-Wilk Test Statistic W 

Sample Size 1% W Value 5% W Value Sample Size 1% W Value 5% W Value 
8 0.749 0.818 13 0.814 0.866 
9 0.764 0.829 14 0.825 0.874 

10 0.781 0.842 15 0.835 0.881 
11 0.792 0.850 16 0.844 0.887 
12 0.805 0.859    

(Complete tables in the following references: Shapiro and Wilk, 1965; EPA, 1992a; 
Gibbons, 1994) 
 
The process for testing for lognormally distributed data is the same, except that the data 
are log-transformed prior to performing the Shapiro-Wilk hypothesis test.   
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Appendix E.  Seasonal Trends 
 

E.1 Testing for Seasonality Using the Kruskal-Wallis Test 
 
One of the important requirements for conducting statistical tests is temporal stationarity, 
specifically; do the data exhibit seasonal variations in concentration? Note that k, the 
number of seasons, is defined to be appropriate for the data being analyzed; e.g., hourly 
stream temperature measurements might be grouped into two 12-hour “seasons” per day 
whereas monthly groundwater measurements are usually grouped into four 3-month 
“seasons.”  For measurements collected quarterly over a multi-year period (each quarter 
tested in the same month), some of the variation in background water quality may be due 
to changing land uses (nearby agricultural practices, river and canal flows, etc.) which 
can obscure seasonal variations in water quality due to precipitation, evapotranspiration, 
etc.   
 
The Kruskal-Wallis test for seasonality is described below (taken from Gilbert, 1987; 
Helsel and Hirsch, 1995).  This test is considered a non-parametric test, which means that 
the underlying population distribution is not assumed.  The Kruskal-Wallis test may be 
computed by an exact method used for small samples sizes (see Lehmann, 1998 or 
Conover, 1999), or by a large-sample or chi-square approximation (Helsel and Hirsch, 
1995).  The null and alternative hypotheses are: 
 

H0: All of the seasonally-grouped subsets of data have identical distributions 
HA: At least one group differs in its distribution. 

 
In other words, do the measurements taken in one quarter of the year differ significantly 
from the measurements taken in any other quarter of the year? 
 
To conduct the test, the data are ranked from smallest to largest, from 1 to N.  If H0 is 
true, the average rank for each of the k seasonal groups should be similar and also be 
close to the overall average of the N data.  When HA is true, the average rank for some of 
the groups will differ from others, reflecting the difference in magnitude of its 
observations.  The test statistic, K, will equal 0 if all groups have identical average ranks 
and will be positive if group ranks are different.  The distribution of K when H0 is true 
can be approximated by a chi-square distribution with k-1 degrees of freedom (df), where 
k is the number of seasons (Helsel and Hirsch, 1995). For example, with quarterly data, k 
= 4 and df = 3.  
 
All N observations are given a numerical rank from 1 to N, smallest to largest.  When 
observations are tied, the average of their ranks are assigned to each (i.e. if observations 6 
and 7 have the same value, assign 6.5 as the rank for both).  These ranks, Rij, are then 
used for computation of the test statistic.  Within each group, the average group rank jR  
is computed as: 
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The average group rank, jR , is compared to the overall average rank, ( ) 2/1NR += , 
squaring and weighting by sample size, to form the test statistic K: 
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Reject H0 if ( )

2
1-k,1K αχ −≥ , the 1-α quantile of a chi-square distribution with k-1 degrees 

of freedom; otherwise do not reject H0 (see Table A19 in Gilbert, 1987). 
 
For the minimum DEQ suggested data requirements (i.e., three years of quarterly data)  
N=12, nj=3, and k=4.  The above equation reduces to: 
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Table E.1 A Portion of the Quantiles of the Chi-Square Distribution with k-1 Degrees of 
Freedom 

Confidence Level Degrees 
of 

Freedom 
(k-1) 

0.900 0.950 

1 2.71 3.84 
2 4.61 5.99 
3 6.25 7.81 
4 7.78 9.49 
5 9.24 11.07 
6 10.64 12.59 
7 12.02 14.07 
8 13.36 15.51 
9 14.68 16.92 

10 15.99 18.31 
11 17.28 19.68 

 
If the regulated entity discovers a seasonal trend to the collected water quality data, then 
this trend needs to be removed before continuing with further statistical testing.  To 
remove the seasonal trend apply the following calculations: 
 
1) Calculate the mean for all values from the same season in different years, kx . 
2) Calculate the universal mean for all values in the data set, NX . 
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3) For each measurement, subtract the seasonal mean, kx  and add the universal mean, 
NX , to calculate the seasonally adjusted measurement.  The seasonally adjusted 

values have lower overall variance due to removal of seasonal fluctuations. 
 

E.2 Example 
 
Table E.2 summarizes the Kruskal-Wallis test calculations as applied to Wells #B1 and 
#B2 in the example data set of Table B.1.  The TDS values are ranked in ascending order 
from 1 to N=12.  The average quarterly ranks (Rj(1), Rj(2), Rj(3), Rj(4)) and the test 
statistic, K, are calculated, and the resulting K statistic for each well is compared to the 
chi-square values from Table E.1.  In this case, the conclusion is that well #B1 has 
statistically significant seasonal variability.  The above three steps for removing the 
seasonal variability are applied to Well #B1’s data and the resulting transformation is 
listed in the “Adjusted B1” column in Table E.2.  The result of the transformation is a 
data set with the same mean (254), but a significantly lower standard deviation (9.77 
compared to 30.07). 
 
Table E.2  Seasonal Testing of Example Data using Kruskal-Wallis 

 Well #B1 Rank Adjusted B1 Well #B2 Rank 
Year 1 1st quarter 305 12 266 252 7.5 
Year 1 2nd quarter 228 3 264 251 6 
Year 1 3rd quarter 258 7 252 245 3 
Year 1 4th quarter 259 8 268 252 7.5 
Year 2 1st quarter 285 10 246 260 10 
Year 2 2nd quarter 210 1 246 248 5 
Year 2 3rd quarter 274 9 268 275 12 
Year 2 4th quarter 240 5 249 272 11 
Year 3 1st quarter 290 11 251 256 9 
Year 3 2nd quarter 216 2 252 246 4 
Year 3 3rd quarter 248 6 242 218 1 
Year 3 4th quarter 235 4 244 225 2 

      
Rj(1)  11   8.8 
Rj(2)  2   5 
Rj(3)  7.3   5.3 
Rj(4)  5.7   6.8 

K =  9.7   2.1 
Critical statistic =  9.49   9.49 
Seasonal variability?  Yes   No 

      
  Adjusting for Seasonality   
      

Mean_1 293.3     
Mean_2 218     
Mean_3 260     
Mean_4 244.7     
Mean_total 254  254   
St_dev 30.07  9.77   
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Appendix F. Secular Trends  

 
F.1 Testing for Secular Trends Using the Mann-Kendall Test 

 
One of the most important requirements when determining background water quality 
levels for the constituent(s) of concern in up-gradient monitoring wells is deciding 
whether temporal stationarity (steady state) exists.  If the system is not in a steady state 
condition, then background is undefined and setting a level for comparison is not 
statistically valid and can lead to erroneous results.   
 
There are several methods for determining whether the collected data show an increasing 
or decreasing trend through time.  The U.S. Environmental Protection Agency (1988) 
suggests two methods.  One, linear regression analysis, is somewhat simple to apply with 
commercial software, wherein the slope is calculated and tested for statistical 
significance.  Though this method may be easy to perform, IDEQ does not recommend it.  
Linear regression is heavily influenced by outliers (Kimsey, 1996) and also makes 
stronger assumptions about the distribution of the data (normality of residuals, constant 
variance, and linearity of the relationship) (Helsel and Hirsch, 1995).  Instead, IDEQ 
recommends that the regulated entity use the Mann-Kendall test for trend to determine if 
a steady state condition exists within the data. 
 
The Mann-Kendall test is a non-parametric alternative to regression.  A major advantage 
is that no assumption of normality is required (it is a non-parametric test).  In addition, 
the procedure is useful if there are missing data values (e.g., a quarterly sample was 
missed).  Data reported as less than the detection limit are assigned a common value 
smaller than the smallest measured value- typically the ½ the detection limit.  The actual 
value does not matter because the test only uses the relative magnitudes of the data rather 
than the specific data values (Gilbert, 1987).  The procedure outlined below is for cases 
when the number of collected background water quality data points is 40 or less (Gilbert, 
1987; Gibbons, 1994).  For situations where more than 40 data points are available, the 
regulated entity is referred to the literature (Mann, 1945; Kendall, 1975; Gilbert, 1987).   
 
Refer to Table F.1 for the general procedure in setting up the test. First, order the data as 
shown by sampling date: N21 x,...,x,x where xi is the measured value for sampling date i.  
Second, record whether ever possible difference ii' xx −  is positive or negative (where i’ 
> i), and how many total positive and negative differences occur in the data set. 
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Table F.1 Mann-Kendall Test Set-Up 

Measurement Ordered by Time     
x1 x2 x3 … xN-1 xN No. of + 

differences 
No. of – 

differences 
 x2 – x1 x3 – x1  xN-1 – x1 xN – x1   
  x3 – x2  xN-1 – x2 xN – x2   
    xN-1 – x3 xN – x3   
    … …   
    xM-1 – xN-2 xN – xN-2   
     xN – xN-1   
       Total no.  of  

+ differences 
Total no.  of  
- differences 

 
 
This procedure is equivalent to defining: 
 

( )
⎪
⎩

⎪
⎨

⎧

<−−
=−
>−

=−
0x xif  1
0x xif    0
0x xif     1

xxsgn

ii'

ii'

ii'

ii'  

 
and computing the Mann-Kendall statistic as:  
 

( )∑ ∑
= +=

−=
1-n

1i 1ki'
ii' xxsgnS , 

 
S is equal to the number of positive differences minus the number of negative differences 
in bottom two right-most entries of Table F.1.  Conceptually speaking, if S is a large 
positive number, then measurements taken later in time tend to be larger than those taken 
earlier.  Similarly, if S is a large negative number, then measurements taken later in time 
tend to be smaller. 
 
Table F.2 contains part of the complete Mann-Kendall probability table (Kendall, 1975) 
that would be most useful for sample sizes close to the DEQ recommended minimum 
requirement of 12 samples.  The table has been modified to perform a two-sided test 
(detection of either an upward or downward trend) so the probability values are twice 
those in the original table.  The tabulated values are used to test the null hypothesis of no 
secular trend (statistically insignificant slope) versus the corresponding alternate 
hypothesis of a significant upward or downward slope.  The tabulated probability 
corresponding to the absolute value of S is compared to the test’s specified significance 
level (α); H0 is rejected if the tabulated probability is less than α. 
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Table F.2 Values of S and corresponding probabilities for the 2-sided Mann-Kendall Test 

Values of N Values of N Absolute 
value S 12 13 16 

Absolute 
value S 14 15 

0 1.000 1.000 1.000 1 1.000 1.000 
2 0.946 0.952 0.964 3 0.914 0.922 
4 0.840 0.858 0.894 5 0.830 0.846 
6 0.738 0.766 0.824 7 0.748 0.770 
8 0.638 0.676 0.756 9 0.688 0.698 

10 0.546 0.590 0.690 11 0.590 0.626 
12 0.460 0.510 0.626 13 0.518 0.548 
14 0.380 0.436 0.564 15 0.450 0.496 
16 0.310 0.368 0.506 17 0.388 0.436 
18 0.250 0.306 0.450 19 0.330 0.380 
20 0.196 0.252 0.398 21 0.280 0.328 
22 0.152 0.204 0.350 23 0.234 0.282 
24 0.116 0.164 0.306 25 0.192 0.240 
26 0.086 0.128 0.266 27 0.158 0.202 
28 0.062 0.100 0.228 29 0.126 0.168 
30 0.044 0.076 0.194 31 0.100 0.140 
32 0.032 0.058 0.166 33 0.080 0.114 
34 0.020 0.042 0.140 35 0.062 0.092 
36 0.014 0.030 0.116 37 0.048 0.074 
38 0.008 0.022 0.096 39 0.036 0.058 
40 0.006 0.014 0.078 41 0.026 0.046 
42 0.004 0.010 0.064 43 0.020 0.036 
44 0.002 0.006 0.052 45 0.014 0.028 
46 0.000 0.004 0.042 47 0.010 0.020 
48 0.002 0.032 49 0.006 0.016 
50 0.002 0.026 51 0.004 0.012 
52 0.000 0.020 53 0.004 0.008 
54 0.016 55 0.002 0.006 
56 0.012 57 0.002 0.004 
60 0.008 59 0.000 0.002 
62 0.006 61 0.002 
64 0.004 63 0.002 
66 0.004 65 0.000 
68 0.002 67 
70 

 

 

0.002  

 

 

Bold values indicate combinations of S and N that correspond to a trend at the α = 0.10 level (90% 
confidence level). 

 
 

F.2 Example 
 
Table F.3 summarizes results for the Mann-Kendall test as applied to the example data of 
Table B.1.  For this example, we will use a significance level of α = 0.05.   The sum of 
all the positive and negative tallies is made using the approach outlined in Table F.1 and 
an S value is computed (e.g., for Well #B1, S = 27 – 39 = -12).  This S value is compared 
to the probability listed in Table F.2 for N = 12 and S = |-12| (p = 0.46); since 0.46 is 
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greater than the significance level of the test, we accept the null hypothesis (no secular 
temporal trend).   
 

 

 

Table F.3 Results of Mann-Kendall test as applied to example data set 
 Temporal Trend  

 Well #B1 + - Well #B2 + - 
Year 1 1st quarter 305 0 11 252 4 6 
Year 1 2nd quarter 228 8 2 251 5 5 
Year 1 3rd quarter 258 4 5 245 7 2 
Year 1 4th quarter 259 3 5 252 4 4 
Year 2 1st quarter 285 1 6 260 2 5 
Year 2 2nd quarter 210 6 0 248 3 3 
Year 2 3rd quarter 274 1 4 275 0 5 
Year 2 4th quarter 240 2 2 272 0 4 
Year 3 1st quarter 290 0 3 256 0 3 
Year 3 2nd quarter 216 2 0 246 0 2 
Year 3 3rd quarter 248 0 1 218 1 0 
Year 3 4th quarter 235   225   

       
  27 39 26 39 
 S = -12 -13 
  Table Lookup 0.46 Table Lookup 0.42 
  No trend  No trend 

 
 
Subsequent statistical analysis may proceed if the Mann-Kendall test shows that there is 
no statistically significant temporal trend in the background water quality data.  If a 
significant trend exists, however, then the method in Appendix L needs to be followed in 
setting an interim decision threshold. 
 
Deseasonalized data (see Appendix E.) should be used for trend analysis, because the 
Mann-Kendall results will be biased when seasonality is present in the data.  The 
seasonal Kendall Test estimates the temporal trend by adjusting for seasonal variation. 
The test performs well when the product of the number of seasons and number of years is 
at least 25 (Helsel and Hirsch, 1995).  For example, if three or more years of independent 
monthly data or seven years of quarterly data are available, the Seasonal Kendall test can 
be used to detect a seasonally-adjusted trend.  
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Appendix G. Data Pooling 

 
G.1 Combining Well Data Sets for Normally Distributed Data 

 
The advantage of combining background data from multiple up-gradient monitoring 
wells is that, by increasing sample size, greater power can be realized for decision 
thresholds defined at a given confidence level. However, data sets can only be combined 
if it can be shown that they are statistically similar.   
 
IDEQ recommends that the data sets from two wells first be tested for similar variance 
using the F-test; then, if their variances are similar, they can be tested for similar means 
using the t-test (Larsen and Marx, 1986). For two independent, normally distributed 
random samples (X and Y) having means of x  and y and variances of s2

x and s2
y, 

respectively, then the null hypothesis H0 for the F-test is that s2
x = s2

y.  H0 can be rejected 
at the α level of significance if  
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where m and n are the sample size for each data set.  For the case of α = 95% and m and 
n both equal to 12 data points (IDEQ’s minimum recommended data requirement),  H0 
can be rejected if s2

y / s2
x is either ≤ 0.29 or ≥ 3.48.   

 
If H0 is rejected, then the data sets cannot be combined.  If H0 cannot be rejected, then the 
data sets can be tested using the two-sample t-test. For two independent, normally 
distributed random samples (X and Y) having means of x  and y and statistically equal 
variances of s2

x and s2
y, then H0 for the t-test is  μx = μy.  H0 can be rejected at the α level 

of significance if  
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For the case of α = 95% and m and n both equal to 12, H0 can be rejected if t is either ≤ -
2.07 or ≥ 2.07.   
 
If the null hypothesis is rejected, then the data sets cannot be combined.   
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G.2 Example 

 
Having adjusted background well #B1 for seasonal affects and having found that both 
data sets (Well #B1 and Well #B2) are normally distributed (Appendix D), the question 
arises whether the two data sets can be combined into a single background data set.  
Looking at the descriptive statistics, the means are similar (254 ppm for well #B1 and 
250 ppm for well #B2) and the standard deviations are similar (9.77 ppm for well #B1 
and 16.4 ppm for well #B2), so the implication is that the data could be combined.  To 
check if the variances are statistically similar, the F-test is conducted first. 
 

818.2
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For the case of α = 95% and m and n both equal to 12 data points s2

y / s2
x must be ≤ 

0.283 or ≥ 3.66 in order to reject H0.  In this case, H0 cannot be rejected.   
 
Next, the t-test is applied to the two data sets. 
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Since the test statistic (0.726) is neither ≤ -2.0739 nor ≥ 2.0739, H0 cannot be rejected.  
Therefore, the TDS data sets can be combined for the purposes of setting a background 
water quality level. 
 

G.3 Combining Well Data Sets for Lognormally Distributed Data 
 
The process for determining whether background data can be combined for lognormally 
distributed data is the same as that for normal data, except that the calculations of the 
mean and standard deviation differ.  The following equations can be used to calculate the 
arithmetic mean and standard deviation before applying the F-test and t-test (Gilbert, 
1987). 
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Where N is the size of the sample. The decision to pool data is made using transformed 
data. Interpretation of the mean and standard deviation in original scale units can be 
obtained using the following equations: 
 

⎟
⎠
⎞

⎜
⎝
⎛ += 2

sxexpx
2
ln

ln  

 
( ) ( )[ ]1sexps2xexps 2

ln
2
lnln −+= . 

 
G.4 Combining Well Data Sets for More Than Two Wells or Non-Parametrically 

Distributed Data 
 
Levene’s test (Levene, 1960) can be used to check the assumption of homogeneity of 
variance if there are more than two wells to be pooled.  The formula is  
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where iijij meanYZ −= .  The group means of the Zij are .iZ  and the overall mean of Zij 

is ..Z . N is the overall sample size, k is the number of subgroups (i.e., number of 
background wells to be pooled), and Ni is the sample size for the ith subgroup. If the data 
are normally distributed, all calculations are based on the original scale units. If the data 
are log-normal, all calculations are based on log-transformed data.  
 
As with normal and lognormal data, non-parametric data sets need to be checked for 
homogeneity of variance before a comparison of medians can be performed.  Levene’s 
test can be extended (Brown and Forsythe, 1974) for working with the medians of the 
data sets. In the above formula, iijij medianYZ −=  and other terms remain the same.  
 
Levene’s test rejects H0 (s2

x = s2
y) if W > F(α, k-1,N-k) where F(α, k-1,N-k) is the upper critical 

value of the F distribution with k - 1 and N - k degrees of freedom at a significance level 
of α. 
 
If H0 is rejected, then the data sets cannot be combined.  If H0 cannot be rejected, then the 
Kruskal-Wallis test can be applied to determine if the subgroup medians are statistically 
similar and the k data sets can be combined.  The Kruskal-Wallis test is described in 
Appendix E. 
 
The Shapiro-Wilk Test for normality (Appendix D) can be used to determine if the 
combined data set is normally distributed; if it is, then the combined data can be used to 
set a parametric decision threshold (Appendix H or J).  If the data are non-normally 
distributed, then the data should be logarithmically transformed and the Shapiro-Wilk test 
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repeated.  If the data are found to be lognormally distributed, then proceed to Appendix H 
or J; otherwise, go to Appendix I or K.   
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Appendix H. Parametric Upper Tolerance Limits 
 

H.1 The Parametric Upper Tolerance Limit as a Decision Threshold 
 

This section of the guidance assumes that the regulated entity has a background data set 
that has been found to be in a steady state, to have no statistically significant seasonal 
effects or been corrected for seasonality, and to meet the normality or lognormality 
distribution assumptions.  In most cases, it is assumed that the user is dealing with a new 
site where future water quality measurements will be compared to background water 
quality measurements in the same well (an intrawell analysis).  The method of upper 
tolerance limits (UTL) is used to set the background water quality for each constituent of 
concern in each monitoring well.  
 
When monitoring ground water quality, the compliance point samples are assumed to 
come from the same population as the background values until significant evidence of 
contamination can be shown (EPA, 1992a).  Once the UTL is set, each compliance 
sample is compared to the UTL (Fisher and Potter, 1989; Gibbons, 1994; Kimsey, 1996).  
To minimize the false negative rate and reduce the need for verification resampling, a 
specified exceedance rate (coverage) is allowed (e.g., no more than 5 exceedances per 
100 future comparisons).  If this rate is exceeded, then significant evidence of 
contamination is indicated.  In setting compliance limits, DEQ suggests that UTLs be set 
such that 95% of the tested samples (coverage) are below the limit with 95% confidence.  
Therefore, in this discussion, the compliance standards will be calculated for 95% 
confidence and 95% coverage.   
 
Upper tolerance limits define a range within which some proportion of the population 
(the coverage ; in this case, 95%) will fall some proportion (in this case 95%) of the time.  
The limit is calculated using the following formula: 
 

sxUTL K+=  
 

where UTL = upper tolerance limit, x  = arithmetic mean of the data, s = the arithmetic 
standard deviation of the data, and K is a constant that changes depending on the 
proportions used (see Gibbons, 1994 for complete mathematical formulation).  Table H.1 
provides examples of K factors for 95% coverage and 95% confidence. The process for 
setting tolerance intervals for lognormally distributed data is the same as that for normal 
data, except that the UTL is set for and compared to the log-transformed data values.   
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Table H.1 Partial Table of Factors (K) for Constructing One-Sided Normal Upper 
Tolerance Limits at 95% Confidence and 95% Coverage 

Sample Size 95% Coverage Sample Size 95% Coverage 
8 3.188 16 2.523 
9 3.032 17 2.486 

10 2.911 18 2.453 
11 2.815 19 2.423 
12 2.736 20 2.396 
13 2.670 25 2.292 
14 2.614 30 2.220 
15 2.566 35 2.166 

    
See Gibbons, 1994 and Guttman, 1970 for more complete tables 
 

H.2 Example 
 
As was shown in Appendix G, the sample TDS data for background well #B1 and 
background well #B2 could be combined into a single data set of 24 data points.  The 
resulting data set is normally distributed and has a mean of 252 ppm and a standard 
deviation of 23.8 ppm.  The appropriate K factor, therefore, as interpolated from Table 
H.1, is 2.313 and the 95% UTL is:   
 

ppm 3078.23*313.2522UTL =+= . 
 
As long as no more than 5% of future TDS measurements exceed this threshold, the 
constituent of concern is deemed not to be affected by the facility’s operation.  Should a 
future exceedance of the UTL violate the 95% coverage criterion (e.g., producing 6 
exceedances after 100 comparisons), then the site would be deemed out of compliance.  
As Gibbons (1994) points out, the UTL’s specification of a coverage makes verification 
resampling unnecessary, because a specified number of exceedances are expected and 
give the method its power without a verification requirement.  

 
If the pooled background TDS in Table B.1 happened to be lognormally distributed, then 
x  and s of the log-transformed data in Table B.1 would be 5.53, and 0.09, respectively.  
The UTL for log-transformed data values would then be: 
 
    UTL = 5.53 + 2.313 (0.09) = 5.74   
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Appendix I. Non-parametric Upper Tolerance Limits  
 

I.1 The Non-parametric Upper Tolerance Limit as a Decision Threshold 
 
For background data sets that are neither normally nor lognormally distributed, but meet 
the steady state condition and have been corrected for seasonal effects, a non-parametric 
UTL can be used to set a decision threshold for the constituents of concern.  In most 
cases, this method will be applied to a new site where future water quality measurements 
will be compared to background water quality measurements in the same well (an 
intrawell analysis). Table I.1 shows the background sample sizes (N) required to achieve 
the desired coverage at varying confidence levels.  The UTL is set equal to the Nth-
highest value in the background data set. 
 
For example, to be 85% confident (column 1, row 5) that 90% of future comparisons 
(column 7) will fall below the upper tolerance limit, then the 19th highest background 
data value is used as the limit.  For 95% confidence and 95% coverage, background 
sample size must be at least 59.  
 
 

Table I.1 Sample Sizes for Non-parametric Upper Tolerance Limits  

1-α q=0.500 0.700 0.750 0.800 0.850 0.900 0.950 0.975 0.980 0.990 
0.700 2 4 5 6 8 12 24 48 60 120 
0.750 2 4 5 7 9 14 28 55 69 138 
0.800 3 5 6 8 10 16 32 64 80 161 
0.850 3 6 7 9 12 19 37 75 94 189 
0.900 4 7 9 11 15 22 45 91 144 230 
0.950 5 9 11 14 19 29 59 119 149 299 

q = proportion of population covered by the tolerance interval. The quantity tabulated is 
the required sample size, N or greater, such that ( ) α−≥≤ 1Xpopulation of qleast at P (N) . 
From Conover (1999) Table A5 
 
 

I.2 Example 
 
Suppose that the TDS data in the example data set had been non-parametrically 
distributed.  In that case, with a pooled background sample size of 24, Table I.1 would 
indicate that 95% coverage could be obtained at no better than a 70% confidence level 
(first row, eighth column).  Alternatively, a 90% coverage and 90% confidence would be 
possible using the 22nd highest TDS value in Table B.1 (285 ppm) as the non-parametric 
UTL. 
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Appendix J. Parametric Upper Prediction Limits 

 
J.1 The Parametric Upper Prediction Limit as a Decision Threshold 

 
This section of the guidance pertains to data sets that have been corrected for seasonality 
and show no statistically significant secular trend, and are normally or lognormally 
distributed.  In addition, downgradient well water quality is assumed to differ from 
ambient conditions (due to current or historic land uses that have affected local site 
background), so that an interwell analysis is necessary (i.e., downgradient wells will be 
compared to up-gradient wells).  In this case, a parametric upper prediction limit will be 
set on the basis of up-gradient water quality data (from either pooled or individual wells).  
As in Appendix H, the arithmetic mean and standard deviation for lognormal 
distributions must be correctly calculated (see Appendix G, section G.3) and the UPL 
defined for logarithmically transformed data. 
 
In interwell comparison, future measurements in multiple down-gradient wells are 
compared to an upper prediction limit based on background water quality data from up-
gradient wells (possibly pooled; see Appendix G).  To reduce the sitewide false positive 
rate, any exceedance encountered is verified through resampling (Gibbons 1994, Sections 
1.5 and 1.6).  The method for verification resampling adopted by IDEQ for WLAP 
permits and Resource Conservation and Recovery Act (RCRA) facilities is to allow the 
facility to take two subsequent verification samples (these samples must also be 
temporally independent of the initial sample and of each other, so sufficient time must 
elapse between sampling and resampling to ensure temporal independence).  If both 
samples exceed the UPL, then the initial exceedance is confirmed.  This verification 
resampling scheme is referred to as “one of three samples in bounds” (Gibbons, 1994, 
Table 1.6) and has the lowest false negative rate and highest power of the three 
verification schemes discussed by Gibbons. Table J.1 gives multiplication factors (K) for 
the UPL formula: 
 

U sxPL K+= ,  
 
where x  is the mean of N up-gradient background measurements and s is their standard 
deviation.  The major difference with UPLs is that the K factor depends on the number of 
future comparisons.  In general, the larger the number of future comparisons, k, the 
higher the K factor and the UPL; conversely, the larger the background sample size, N, 
the lower the K factor and UPL.  The number of future comparisons, k, is defined as: 
 
                               k = [number of measurements to be collected per well per year] 
                                    ×   [number of years] ×  [number of wells] ×  [number of COCs]  
 
For example, for a down-gradient well that will be sampled four times a year for five 
years (the permit re-application period) and analyzed for two constituents of concern, k = 
1 x 4 x 5 x 2 = 40 comparisons.  
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If the up-gradient, background well data cannot be pooled, then a separate UPL will be 
determined for each up-gradient well and decisions made as to which down-gradient 
wells will be compared to which up-gradient wells.  These decisions will affect the value 
of N and k that are applicable for different downgradient wells because the upgradient 
background data sets will differ.  Note that the K factors in Table J.1 increase only 
slightly for k > 50; if K factors are required for higher k, they can be estimated by 
extrapolation. 
 
Table J.1 K Factors at α=0.05 for a Verification Protocol Where Both Resamples Must 
Confirm the Initial Exceedance  
 k = Number of Future Comparisons 

N 10 20 30 40 50 
4 2.02 2.42 2.65 2.82 2.94 
8 1.37 1.61 1.75 1.84 1.92 

12 1.21 1.42 1.54 1.62 1.68 
16 1.14 1.33 1.44 1.52 1.58 
20 1.10 1.28 1.39 1.46 1.51 
24 1.08 1.25 1.35 1.42 1.47 
36 1.03 1.20 1.29 1.36 1.41 
48 1.01 1.17 1.27 1.33 1.38 

From Gibbons (1994) Table 1.6, as prepared by Charles Davis based on results in Davis and McNichols 
(1987).  Bold values indicate K factors that would apply to five years of quarterly future measurements 
(e.g., 20 comparisons of one constituent of concern for one well; 40 for two wells or for two CoCs at one 
well) and for various background sample sizes, each representing three years of quarterly data collected at 
1, 2, 3, or 4 background wells. 
 

J.2 Example 
The pooled TDS background data set from wells #B1 and B2 has an overall N, x  and s 
of 24, 252 and 23.8, respectively.   For a 5-year permit re-application period, with 
quarterly samples to be collected at two down-gradient wells and a single constituent of 
concern (TDS),  k is 5*4*2=40 and the K-factor read from Table J.1 is 1.42.  The UPL is 
therefore:  
  
    UPL = 252 ppm + 1.42 (23.8) = 286 ppm. 
 
Future measurements from the down-gradient well over the monitoring period will be 
compared to its UPL. Every exceedance triggers a verification resampling event using the 
protocol specified for Table J.1. At each permit re-application, the UPL will be re-
evaluated using all available data, including the new up-gradient data collected since last 
application as well as previous data.   
 
If the pooled background TDS in Table B.1 happened to be lognormally distributed, then 
x  and s of the log-transformed data in Table B.1 would be 5.53, and 0.09, respectively.  
The UPL for log-transformed data values would then be: 
 
    UPL = 5.53 + 1.42 (0.09) = 5.66   
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Appendix K. Non-Parametric Upper Prediction Limits 
 

K.1 The Non-parametric Upper Prediction Limit as a Decision Threshold 
 

For data sets that are not normally or lognormally distributed, steady state, independent, 
and corrected for seasonal effects, a non-parametric prediction limit can be used to set 
background levels.  Like non-parametric tolerance limits, non-parametric prediction 
limits require larger background sample size to provide high levels of confidence.  The 
non-parametric UPL is set equal to the maximum value out of N independent background 
samples required to achieve a specified confidence level for a specified number of future 
comparisons.  Confidence level is a function of N, the resampling plan used, and the 
number of future comparisons k.  For large k or small α, a large number of background 
samples is required (Gibbons, 1994).   
 
One assumption inherent in this procedure is that the down-gradient monitoring well’s 
water quality data represents the same population as the up-gradient (background) well(s) 
to which it is compared.   The interwell analysis method could be applied even at new 
facilities in situations where the data from down-gradient wells insufficient to justify an 
intrawell analysis.   
 
As is the case with parametric UPLs, up-gradient background data from multiple wells 
can only be pooled if the means and standard deviations of each up-gradient well’s data 
set are statistically indistinguishable.  For non-parametric data, the statistical test to check 
for statistical differences of the variances and medians is Levene’s Test and the Kruskal-
Wallis test, respectively (Appendix G). 
 
Table K.1 (from Gibbons, 1994, Chapter 2) summarizes confidence levels for various 
background sample sizes and future comparisons and the same verification resampling 
scheme discussed in Appendix J (take two resamples, if both also exceed the UPL then 
exceedance is verified).  Table K.1 shows how, as background sample size increases, so 
does the confidence level; conversely, confidence level decreases as the number of future 
comparisons (k) increases.   
 
Table K.1 Confidence Levels for the Non-Parametric Prediction Limit Where an 
Exceedance is Verified If Both of Two Resamples Also Exceed the Limit  

 k = Number of Future Comparisons 
N 10 20 30 40 50 60 80 100 
4 .5585 .4393 .3759 .3347 .3050 .2822 .2491 .2257 
8 .7616 .6522 .5836 .5348 .4976 .4678 .4225 .3890 

12 .8538 .7676 .7072 .6613 .6246 .5942 .5463 .5095 
16 .9023 .8356 .7852 .7449 .7115 .6831 .6368 .6001 
20 .9305 .8785 .8369 .8024 .7729 .7473 .7044 .6695 
25 .9516 .9126 .8798 .8516 .8268 .8047 .7668 .7350 
35 .9729 .9492 .9279 .9087 .8912 .8751 .8463 .8211 
50 .9858 .9727 .9604 .9488 .9379 .9275 .9083 .8908 

From Gibbons (1994) Table 2.13, as prepared by Charles Davis based on results in Davis and McNichols 
(1993) 



DRAFT - For Public review and comment 

StatGuidance 71707PublicDraft 8/3/2007 64

 
K.2 Example 

 

The pooled sample size for background TDS data from upgradient wells #B1 and B2 is N 
= 24; for a single constituent of concern and a 5-year permit re-application period with 
quarterly samples to be collected at two down-gradient wells, k is 40.  The UPL is set 
equal to the highest value of the N background measurements (305 ppm, Table B.1).  
Table K.1 shows that any future comparisons to this UPL would be at no higher than 
about an 85% confidence level.  If a higher confidence level were desired, then fewer 
future comparisons would have to be specified; for example, to achieve a 90% confidence 
with N = 24, k would have to be limited to about 24 comparisons (interpolating the sixth 
row of Table K.1).  This would correspond to a 3-year comparison period in the above 
example.  
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Appendix L. Interim Decision Thresholds in the Presence of a Secular Trend 
 

L.1 Introduction 
 

The purpose of this appendix is to provide guidance for setting a regulatory threshold in 
cases where (1) background water quality cannot be established because the up-gradient 
monitoring wells exhibit secular trends in water quality, and/or (2) site practices are being 
modified to bring the system into compliance and down-gradient water quality is or will 
be affected. 
 
In case (1) the facility is affected by secular trends originating off site and over which the 
regulated entity may have no control.  In case (2), previous permitted use of a facility 
may have caused down-gradient wells to exceed the primary and/or secondary constituent 
standards (IDAPA 58.01.11.200) or ACLs for constituent(s) of concern, and the regulated 
entity may be implementing operational changes in response.  Future water quality trends 
may develop as site background comes to a new steady state condition.  In either case, the 
regulated entity should continue monitoring the site during the transition period until 
methodologies in Appendices H - K can once again be applied.  In the interim, the 
method described in Section L.2 should be followed.  
 

 
L.2 Procedure for setting a decision threshold under non-steady state conditions 

 
The assumption is made that if ground water is not currently in a steady state condition, 
then it is approaching a steady state condition because upgradient land uses or practices at 
the facility have stabilized.  During this transition time, data still need to be collected, and 
limits are required to ensure that the approved practices are causing the water quality to 
continue to trend towards a future steady state condition.  The following method is to be 
used for setting compliance limits during the transition time.  
 
1) Each year, in the first quarter, determine if the system is trending or in steady state 

(Mann-Kendall Test). 
• The facility should recheck annually because it is likely that a trend will change 

with time as a new steady state condition is approached.  For example, the 
constituent(s) of concern will begin to level off as they approach steady state. 

• Once the COC has defined a statistically steady state condition, use the last 12 
data points to establish tolerance or prediction intervals described in the 
appendices.   

• In cases where there is a new, mutually agreed-upon mean concentration for a 
particular constituent of concern (case-by-case basis), the standard deviation 
should be based on the background concentration in the monitoring wells.  

2) If the system shows a temporal trend, estimate the trend by Sen’s slope method 
outlined in Section L.3. 

3) In cases where a limit is needed for comparison with the trending data, use the 100(1-
α)% lower confidence limit for an increasing trend and the 100(1-α)% upper 
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confidence limit for a decreasing trend.  The difference between the next 
measurement and its previous measurement should be within these limits.   

4) In the case of an increasing trend, the regulated entity should use any exceedance as a 
warning that the current practices being used to reach a new steady state condition 
may not be adequate.  An exceedance of the confidence limit during the transition 
period will be addressed on a case-by-case basis.   

 
L.3 Non-parametric Sen’s slope method to estimate trend  

Sen’s trend estimator is simple and particularly useful for groundwater monitoring 
(Gibbons, 1994). The following fabricated example shows how to calculate Sen’s slope 
for a trending groundwater TDS time series. The data represent a modified version of 
well B1’s data from a previous example.  

 

Time ID 
Fabricated 
Well B1 

Year 1 1st quarter 228
Year 1 2nd quarter 210
Year 1 3rd quarter 216
Year 1 4th quarter 248
Year 2 1st quarter 235
Year 2 2nd quarter 274
Year 2 3rd quarter 240
Year 2 4th quarter 259
Year 3 1st quarter 285
Year 3 2nd quarter 258
Year 3 3rd quarter 305
Year 3 4th quarter 290

 
Step 1: Lay out the concentrations in temporal order 
Step 2: Obtain individual slopes Qi for each period i’ > i, where i is any starting time and 
i’ is a time following i. The total number of individual slope comparisons is N’=n(n-1)/2. 
In this example, N’=(12)(11)/2=66. 
 
Time period 1 2 3 4 5 6 7 8 9 10 11 12 
TDS conc. (mg/l) 228 210 216 248 235 274 240 259 285 258 305 290 
Qi   -18.0 -6.00 6.67 1.75 9.20 2.00 4.43 7.13 3.33 7.70 5.64 

   6.00 19.0 8.33 16.0 6.00 8.17 10.7 6.00 10.6 8.00 
    32.0 9.50 19.3 6.00 8.60 11.5 6.00 11.1 8.22 
     -13.0 13.0 -2.67 2.75 7.40 1.67 8.14 5.25 
      39.0 2.50 8.00 12.50 4.60 11.7 7.86 
       -34.00 -7.50 3.67 -4.00 6.20 2.67 
        19.0 22.5 6.00 16.3 10.0 
         26.0 -0.50 15.3 7.75 
          -27.0 10.0 1.67 
           47.0 16.0 
            -15.0 
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Step 3: Rank the N’ individual slopes from smallest to largest. In this example, the 
ranking results are shown in the following table:  
 
Qi Rank  Qi Rank Qi Rank Qi Rank  

-34.0 1 3.33 18 7.75 35 11.7 52 
-27.0 2 3.67 19 7.86 36 12.5 53 
-18.0 3 4.43 20 8.00 37 13.0 54 
-15.0 4 4.60 21 8.00 37 15.3 55 
-13.0 5 5.25 22 8.14 39 16.0 56 
-7.50 6 5.64 23 8.17 40 16.0 56 
-6.00 7 6.00 24 8.22 41 16.2 58 
-4.00 8 6.00 24 8.33 42 19.0 59 
-2.67 9 6.00 24 8.60 43 19.0 59 
-0.50 10 6.00 24 9.20 44 19.3 61 
1.67 11 6.00 24 9.50 45 22.5 62 
1.67 11 6.00 24 10.0 46 26.0 63 
1.75 13 6.20 30 10.0 46 32.0 64 
2.00 14 6.67 31 10.6 48 39.0 65 
2.50 15 7.13 32 10.7 49 47.0 66 
2.67 16 7.40 33 11.1 50   
2.75 17 7.70 34 11.5 51   

 
Step 4: The trend estimate, S, is the median of the individual slopes.  If N’ is odd, S is the 
middle slope, Q(N’+1)/2; if N’ is even, S=1/2*(Q(N’/2)+Q(N”+2)/2). In this example, the 
estimated trend slope is the average of the 33rd and the 34th Qi (highlighted in yellow). 
Therefore S= (Q33+Q34)/2=(7.4+7.7)/2=7.55 mg/l. Therefore, the TDS concentration was 
increasing for the three year monitoring period, and the estimated rate of increase is 7.55 
mg/l per quarter.  
 
Step 5: calculate the variance of the estimated slope using the following formula 
(Kendall, 1975): 

)]52)(1()52)(1([
18
1)var(

1
+−−+−= ∑

=
pp

q

p
p tttnnnS  

 
where n is the sample size, q is the number of values that have ties and tp is the number of 
tied measurements (highlighted in gray) for a particular value. In this example, n=12, q=6 
and tp are 2,6,2,2,2,2 for each tied value. Therefore,  

)]52)(1(
1

+−∑
=

pp

q

p
p ttt = (2*1*9)+(6*5*17)+(2*1*9)*4=600 

 
Thus,  

)var(S =
18
1 [(12)(11)(29)-600]=179.3 

 
Step 6: Calculate the lower confidence limit (L.C.L.) for an increasing trend or the upper 
confidence limit (U.C.L.) for a decreasing trend.  
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Z is the score of a standard normal population with mean = 0, and standard deviation = 1. 
M1 and M2 are the orders for the ranked individual slopes in Step 3. If M1 and M2 are not 
integers, interpolation can be made from the neighboring two ranked slopes. For 
example, if M1=3.7, the neighboring two ranks are 3 and 4. Weighted average of the 
individual slopes from rank 3 and rank 4 are used to estimate the slope at rank 3.7. As 3.7 
is closer to 4, individual slope at rank 4 gives more weight. Therefore, the L.C.L = (4 - 
3.7)*Q3+(3.7 - 3)*Q4. In this example, S is positive, indicating an increasing trend. 
Therefore the 95% L.C.L is:  
 

95.21
2

3.17965.166
1 =

−
=M  

and                                        Q21.95=0.05*Q21+0.95Q22 = 5.22 mg/l 
 
Therefore, the next measurement should be no greater than 5.22 mg/l higher than its 
immediately prior measurement.  
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Appendix M:  Example Scenario for an Existing WLAP Facility with No   

Chemical Impact 
 
The majority of the WLAP facilities using this guidance will probably be in this category.  
In addition to existing facilities, new facilities where previous land uses have altered the 
down-gradient ground water at compliance wells from an ambient condition (Figure 2.2) 
also fall into this category.  As with other facilities, the first steps are to conduct 
descriptive statistics on the constituent(s) of concern for each background well (Chapter 
3).  
 
Following the initial descriptive statistical documentation (Appendix B) and an 
evaluation of data independence (Appendix C), the distribution of the each constituent of 
concern should be checked for normality / lognormality (Appendix D) and then its 
temporal behavior evaluated for statistically significant secular trends and seasonal 
pattern (Appendix E).  The concentration versus time diagrams will likely indicate 
whether there is a cyclic nature to the data, but seasonality must be statistically 
demonstrated.  Ideally, at least three years of quarterly data should be available for this 
analysis (wherein each quarter is tested in the same month).  Some of the variation may 
be due to changing land uses (nearby agricultural, river flow, canal flow, etc.) as well as 
true seasonal effects such as precipitation patterns, evapotranspiration, etc.  The preferred 
method for determining seasonal stationarity is the non-parametric Kruskal-Wallis test 
(Appendix E).  Once seasonality has been tested for and possibly removed, the resulting 
data sets should be tested for secular trends using the recommended non-parametric 
Mann-Kendall test (Appendix F). 
 
If the Mann-Kendall test shows no temporal trend for background water quality data, then 
the methodology in Appendix G should be used to determine whether data from multiple 
background wells can be pooled.  If the Mann-Kendall test shows that there is a temporal 
trend, then an alternative method needs to be followed to define a decision threshold for 
future monitoring (Appendix L).   
 
After defining background water quality for each constituent of concern, decision 
thresholds for future monitoring are set. In most cases, the existing facility will have 
altered background water quality, and the process outlined in Appendix J can be used to 
set parametric prediction levels for future interwell comparisons for the constituents of 
concern.  To do so, the data set must (1) exhibit no temporal trends, (2) have no 
statistically significant seasonal effects or be corrected for seasonality, and (3) be 
normally or lognormally distributed.  Appendix K makes the same assumptions except 
that the data distribution is non-parametric.  In either case, site conditions are such that 
down-gradient water quality has been affected by the facility, requiring that interwell 
statistical methods be applied. 
 
Wherever possible, site conditions should be evaluated to determine if interwell 
comparisons are justified.  For example, in situations where background water quality is 
highly variable, or aquifer heterogeneity makes it difficult or impossible to decide which 
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upgradient well(s) should be compared to a downgradient well, then intrawell comparison 
procedures or modifications to those suggested in this document should be considered.  
For example, can background data in downgradient wells be filtered of outliers 
(Appendix N.4) that may represent existing site impacts, prior to applying intrawell 
comparisons?  Or could alternative methods for setting decision thresholds be used, such 
as Shewart-CUSUM control charts (Gibbons, 1994)?  Such a decision may prove to be 
far more defensible for an existing facility than trying to force interwell comparisons 
where hydrogeologic conditions do not warrant them.  
 
The single greatest advantage to using intrawell methods (including variants such as 
Shewart-CUSUM charts) is that compliance decisions are solely based on the statistical 
behavior of constituents of concern in individual wells rather than between wells whose 
up- vs. downgradient hydrogeologic relationship may be suspect or unknown.  In all 
cases, the use of intrawell comparisons at existing facilities are justified only if the 
regulated entity can demonstrate that the data set(s) to be considered as “background” for 
the constituents of concern in down-gradient wells have either not been affected by the 
facility’s prior operations or appropriately filtered of suspected contamination influences 
(e.g., outliers).  
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Appendix N:  Applying Intrawell Analysis at Existing Facilities When 
Interwell Methods are Inadvisable  

 
At existing facilities, large variations in natural background water quality across a site 
can make it difficult to identify hydrologically appropriate pairs of wells for interwell 
comparison.  This problem that can be exacerbated by very slow ground water flow rates 
between wells.  This increases the difficulty of identifying true exceedances from other 
confounding influences in an interwell comparison.  For these reasons intrawell 
comparison, where it can be justified, is the method of choice for compliance monitoring 
(Gibbons, 1994).   
 
At existing facilities intrawell comparison is preferred over interwell analysis whenever 
possible.  Specifically, if historical background data in a downgradient well demonstrates 
that the constituents of concern have not been impacted by the facility’s operations, then 
the use of intrawell methods may be justified for detection monitoring.  
 
To apply an intrawell monitoring method at an existing facility, the regulated entity must 
demonstrate that preexisting contamination was not present in the downgradient wells 
during the historical period selected for establishing the background level.  The intrawell 
method DEQ suggests for monitoring preexisting facilities is the combined Shewhart-
CUSUM control chart method.  It is capable of detecting both immediate and gradual 
releases and is applicable to data sets containing up to 75% non-detects. It combines the 
power of the Shewhart control chart method, which is ideal for rapid detection of large 
releases, and the Cumulative SUM method that is sensitive to gradual releases. Data must 
be temporally independent, so that quarterly data are recommended, and should be 
screened for outliers or other evidence of preexisting impacts by the facility.  
 
 

N.1 Demonstrating that intrawell comparison is appropriate for site-specific conditions 
 

The regulated entity should provide evidence that COCs in downgradient wells have not 
been affected by the facility. For example, based on an evaluation of historical data 
(outlier screening, seasonality, trends), the regulated entity may be able to demonstrate 
that a window of time exists for defining background COC levels for each well in the 
monitoring network. Outlier detection is addressed in Section N.4.  To check trend and 
seasonality of the historical data, refer to Appendix E and F.  
 
Alternatively, groups of up- and downgradient wells can be tested for statistical similarity 
(using methods of Appendix G) to identify those downgradient wells whose water quality 
is statistically indistinguishable from up-gradient wells and whose future data could be 
analyzed using either interwell or intrawell methods. 
 
For each downgradient well that has not been affected by facility impacts, screen the 
historical COC data and remove outliers to establish an historic statistical baseline (e.g.: 
Gibbons, 1994, section 8.4.3, p.164-165).  Justify using an intrawell comparison by 
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demonstrating that no COCs have yet been detected in the downgradient well and that 
other indicator constituents show no significant trends (ASTM, 1998; Cal EPA, 2001). 
  

N.2 Apply a Shewhart-CUSUM control chart method to detect future changes in water 
quality 

 
The Shewhart-CUSUM control chart procedure is a widely used intrawell comparison 
method that EPA recommends for identifying a statistically significant increase in 
chemical concentrations at a single monitoring location (EPA, 1989, 1992; ASTM, 1998; 
ITRC, 2006; URS, 2003; Gibbons, 1994, 1999). DEQ recommends twelve background 
samples are needed to compute a standardized difference value and control limits against 
which subsequent measurements from the same well are compared.  The method has been 
applied in an evaluation mode at various sites (e.g., Chou, 2004) and has performed well.  
Because the method is sensitive to both gradual (long-term) and sudden (short-term) 
increases, it allows for detection of facility impacts at different spatial and temporal 
scales.  The method is applicable to data that are independent and normally distributed; 
hence a well's historic background data should be evaluated for temporal independence, 
or the analysis should be restricted to data that have been collected no more frequently 
than quarterly.   
 
The procedure can be implemented as follows: Let xi be a series of independent 
background observations i = 1, 2…., n (n = 12 at minimum). Let xj be a series of future 
monitoring measurements j = 1, 2, 3….. . Then, using the background data, the following 
steps are applied: 
 

1. Check the data for normality and temporal independence, and apply an 
appropriate transformation if necessary. For transformed data, the following steps 
will be performed on transformed data.  

2. Use the background data (xi) to compute x  and s  as estimates for the mean μ and 
standard deviation σ of the normal distribution.  

3. Define three parameters (all in units of standard deviation) for the control chart:  
 SCL – Shewhart Control limit 
 h – CUSUM Control limit 
 k – amount of shift in the mean to be detected rapidly 
For ground water quality monitoring, experience has shown that a combination of 
parameter values for SCL = 4.5, h = 5.0 and k = 1 are most appropriate. Other values 
may also be used, depending on the sampling scheme and the sample size (Gibbons, 
1994). 
 
4. For each future data value, compute its standard normal deviate, zj: 

s
xx

z j
j

−
=  

5. Compute the CUSUM statistic Sj 
])(,0max[ 1−+−= jjj SkzS  ;  S0=0. 
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If either xj > SCL or Sj > h, then verification resampling is conducted (these samples 
must be temporally independent of the initial sample, so sufficient time must elapse 
between sampling and resampling to ensure temporal independence). This timeframe 
should be determined based on consideration of site-specific ground water flow 
conditions and after consultation with DEQ. . A well is determined to be out of 
compliance only if the verification result also exceeds either the SCL or h. If 
verification resampling is implemented during monitoring, its analytical result is used 
in formulas (4) and (5) to update the CUSUM statistic for future comparisons.  
 
Note that the Shewhart portion of the test quickly detects large, rapid deviations from 
background, whereas the CUSUM portion of the combined test is sequential; a small 
positive shift in the mean concentration over the preceding time period will slowly 
aggregate in the CUSUM statistic and eventually cause the test statistic to exceed the 
CUSUM control limit h. 
Thus, the combined Shewhart-CUSUM method has the ability to detect rapid as well 
as gradual releases from a monitored facility. 

 
N.3 Example 

 
For this example, we assume that the fabricated data in the table have been screened and 
outliers removed, corrected for seasonality and are free of any secular trend.   
 
Table N-1. Background TDS measurements  

Background  
sample n 

Background 
TDS, mg/L 

   

1 259 
2 228 
3 240 
4 216 
5 285 
6 235 
7 290 
8 274 
9 290 

10 228 
11 216 
12 248 

x = 251, s = 28.1, n= 12 
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Table N-2. Monitoring TDS measurements 

Monitoring 
sample 

Measured  
TDS (mg/l) 

zi zi-k Si 

Year 1 1st quarter 258 0.26 -0.74 0.0 
Year 1 2nd quarter 305 1.93 0.93 0.9 
Year 1 3rd quarter 289 1.36 0.36 1.3 
Year 1 4th quarter 268 0.61 -0.39 0.9 
 

Set h= 5, SCL= 4.5, k= 1, calculate zi, zi-k and Si as outlined in section N.2. The values 
are summarized in Table 2. Shewhart-CUSUM control chart is shown in the Figure 
following.  Figure N-1 shows that both zi and Si are within specified limits. Therefore, 
this one-year monitoring shows the system is in compliance.  

 
 

h= 5, SCL= 4.5, k= 1 
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Figure N.1 Comparison to historical data and specified limits 
 

N.4 Detection of Outliers in Background Data 

The following discussion outlines the steps necessary to detect outliers using Dixon’s 
method. Dixon’s test can be used when the number of suspected outliers is small. If m 
outliers are suspected, all m tests must be performed regardless of the outcomes of the 
previous m-1 test. If the mth test exceeds the critical value, all m outliers must be rejected.  
If data are not normal in original scale, proper transformation should be applied.  Once 
the data are transformed, the following steps then should be applied.   
 

1. Sort the data from lowest to highest, denoted by x(i) where i=1 to n.  
2. Calculated the average of the data, x  
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3. Calculated xx i −)(  for each observation and sort the difference from largest to 

smallest.  
4. Decide the number of suspected outliers, m 
5. Calculate Dixon’s statistics using following formula (Gibbons, 1994) for the m 

outliers, starting from the most extreme value.  
 
 

n Highest value Lowest value 
3-7 

)1()(

)1()(

xx
xx

n

nn

−

− −  
)1()(

)1()2(

xx
xx

n −

−
 

8-10 

)2()(

)1()(

xx
xx

n

nn

−

− −  
)1()1(

)1()2(

xx
xx

n −

−

−

 

11-13 

)2()(

)2()(

xx
xx

n

nn

−

− −  
)1()1(

)1()3(

xx
xx

n −

−

−

 

14-25 

)3()(

)2()(

xx
xx

n

nn

−

− −  
)1()2(

)1()3(

xx
xx

n −

−

−

 

 
6. Compare the statistic to following tabulated critical values (Gibbons, 1994) and 

draw conclusions.  
 

n 5% level 1% level n 5%level 1%level 
3 .941 .988 14 .546 .641 
4 .765 .889 15 .525 .616 
5 .642 .780 16 .507 .595 
6 .560 .698 17 .490 .577 
7 .507 .637 18 .475 .561 
8 .554 .683 19 .462 .547 
9 .512 .635 20 .450 .535 
10 .477 .597 21 .440 .524 
11 .576 .679 23 .421 .505 
12 .546 .642 24 .413 .497 
13 .521 .615 25 .406 .489 

 
Using the same fabricated data, we assume that there is one more observation in the 
historical data, the 13th measurement with TDS equals 380 mg/l. Applying above 
outlined steps results in Table 3. The ascending sorted observations x(i) is shown in 

column 3. x  equals 260.7 mg/l. Therefore sorted 
xx −

 for each observation and its 
corresponding measured values are shown in column 4 and 5. Suspected number of 
outlier is 3 (m=3), the highest TDS and the two lowest TDS in the data set. Using 
Dixon’s formula in Step 5 for n=12, starting with the most extreme value TDS=380 mg/l, 
Dixon’s statistic is (380-290)/(380-216)=0.549. It is significant at 5% level but not at 1% 
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level comparing to critical values in the Table of Step 6. Continuing with the lowest 
TDS=216, using the same approach, Dixon’s statistic is 0.162, not significant at 5% level 
and 1% level. Therefore, the observation with TDS=380 mg/l can be rejected and 
observations with TDS=216 should be retained for intrawell comparison.  
 
Table N-3. Background TDS measurement with fabricated outlier 

Background  
Sample, n 

Background 
TDS, mg/l  

Sorted 
TDS 
x(i) 

Sorted 
xx −  

Corresponding 
Background  
TDS, mg/l 

Dixon's  
Statistic 

1 259 x(8) 119.3077 380 0.549* 
2 228 x(3) 44.69231 216 0.162 
3 240 x(6) 44.69231 216 0.162 
4 216 x(1) 32.69231 228  
5 285 x(10) 32.69231 228  
6 235 x(5) 29.30769 290  
7 290 x(11) 29.30769 290  
8 274 x(9) 25.69231 235  
9 290 x(12) 24.30769 285  

10 228 x(4) 20.69231 240  
11 216 x(2) 13.30769 274  
12 248 x(7) 12.69231 248  
13 380 x(13)

 

1.692308 259  
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Acronym/Symbol Definition List 
α  False rejection (or false positive) decision error  
ACL  Alternative concentration limit 
b1  Slope of the linear regression line 
b0  Intercept of the linear regression line 
COC  Constituents of concern 
CV  Coefficient of variation 
γ  Skewness 
IDEQ  Idaho Department of Environmental Quality 
EPA  U.S. Environmental Protection Agency 
F  Variance ratio from the table of the F-distribution 
H0  Null hypothesis 
HA  Alternative hypothesis 
IQR  Interquartile Range 
K  Kruskal-Wallis (K-W) test statistic 
k  Number of seasons (typically 4 for the K-W seasonality test) 
K  Multiplier used for setting UTLs or PLs 
k  The number of future comparisons   
m  The number of years for which data were collected 
MSE  Mean square error 
N  The sample size or total number of measurements (= n x m) 
n  The number of measurements per year (quarterly = 4) 
ppm  Parts per million 
r2  Coefficient of determination 

jR   Average group rank for Kruskal-Wallis test 
s  The standard deviation of a sample data set 
S  The Mann-Kendall test statistic 
s2  The variance of a sample data set  
SSE  Sum of squares due to error 

x
s   Standard error 
TDS  Total dissolved solids 
UPL  Upper prediction limit  
UTL  Upper tolerance limit 
W  Shapiro-Wilk test statistic 
W  Levene test statistic 
WLAP  Wastewater land application permit 
xi, yi  Constituent concentration for the ith ground water sample 
x or NX  The mean (or average)  of a sample data set 

kx   The mean for all values from the same month but different years 
xjk  An alternative way of denoting a chemical measurement, where k = 1, 2,  

…, m denotes the year, and j = 1, 2, …, n denotes the sampling period  
(season) within the year.  The subscript for xjk is related to the subscript  
for xi in the following manner: i = (k-1)n + j. 

( )
2

1-k,1 αχ −  The 1-α quantile of a chi-square distribution with k-1 degrees of freedom 
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